Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmulcl Structured version   Unicode version

Theorem fmulcl 27678
Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmulcl.1  |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) ) )
fmulcl.2  |-  X  =  (  seq  1 ( P ,  U ) `
 N )
fmulcl.4  |-  ( ph  ->  N  e.  ( 1 ... M ) )
fmulcl.5  |-  ( ph  ->  U : ( 1 ... M ) --> Y )
fmulcl.6  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  Y )
fmulcl.7  |-  ( ph  ->  T  e.  _V )
Assertion
Ref Expression
fmulcl  |-  ( ph  ->  X  e.  Y )
Distinct variable groups:    f, g,
t, T    f, Y, g    ph, f, g
Allowed substitution hints:    ph( t)    P( t, f, g)    U( t, f, g)    M( t, f, g)    N( t, f, g)    X( t, f, g)    Y( t)

Proof of Theorem fmulcl
Dummy variables  h  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmulcl.2 . 2  |-  X  =  (  seq  1 ( P ,  U ) `
 N )
2 fmulcl.4 . . . 4  |-  ( ph  ->  N  e.  ( 1 ... M ) )
3 elfzuz 11047 . . . 4  |-  ( N  e.  ( 1 ... M )  ->  N  e.  ( ZZ>= `  1 )
)
42, 3syl 16 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
5 elfzuz3 11048 . . . . . 6  |-  ( N  e.  ( 1 ... M )  ->  M  e.  ( ZZ>= `  N )
)
6 fzss2 11084 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... M
) )
72, 5, 63syl 19 . . . . 5  |-  ( ph  ->  ( 1 ... N
)  C_  ( 1 ... M ) )
87sselda 3340 . . . 4  |-  ( (
ph  /\  h  e.  ( 1 ... N
) )  ->  h  e.  ( 1 ... M
) )
9 fmulcl.5 . . . . 5  |-  ( ph  ->  U : ( 1 ... M ) --> Y )
109fnvinran 27652 . . . 4  |-  ( (
ph  /\  h  e.  ( 1 ... M
) )  ->  ( U `  h )  e.  Y )
118, 10syldan 457 . . 3  |-  ( (
ph  /\  h  e.  ( 1 ... N
) )  ->  ( U `  h )  e.  Y )
12 simprl 733 . . . . 5  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  ->  h  e.  Y )
13 simprr 734 . . . . 5  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
l  e.  Y )
14 fmulcl.7 . . . . . . 7  |-  ( ph  ->  T  e.  _V )
1514adantr 452 . . . . . 6  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  ->  T  e.  _V )
16 mptexg 5957 . . . . . 6  |-  ( T  e.  _V  ->  (
t  e.  T  |->  ( ( h `  t
)  x.  ( l `
 t ) ) )  e.  _V )
1715, 16syl 16 . . . . 5  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  _V )
18 fveq1 5719 . . . . . . . 8  |-  ( f  =  h  ->  (
f `  t )  =  ( h `  t ) )
19 fveq1 5719 . . . . . . . 8  |-  ( g  =  l  ->  (
g `  t )  =  ( l `  t ) )
2018, 19oveqan12d 6092 . . . . . . 7  |-  ( ( f  =  h  /\  g  =  l )  ->  ( ( f `  t )  x.  (
g `  t )
)  =  ( ( h `  t )  x.  ( l `  t ) ) )
2120mpteq2dv 4288 . . . . . 6  |-  ( ( f  =  h  /\  g  =  l )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  =  ( t  e.  T  |->  ( ( h `  t
)  x.  ( l `
 t ) ) ) )
22 fmulcl.1 . . . . . 6  |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) ) )
2321, 22ovmpt2ga 6195 . . . . 5  |-  ( ( h  e.  Y  /\  l  e.  Y  /\  ( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  _V )  ->  ( h P l )  =  ( t  e.  T  |->  ( ( h `  t
)  x.  ( l `
 t ) ) ) )
2412, 13, 17, 23syl3anc 1184 . . . 4  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
( h P l )  =  ( t  e.  T  |->  ( ( h `  t )  x.  ( l `  t ) ) ) )
25 3simpc 956 . . . . . 6  |-  ( (
ph  /\  h  e.  Y  /\  l  e.  Y
)  ->  ( h  e.  Y  /\  l  e.  Y ) )
26 eleq1 2495 . . . . . . . . 9  |-  ( f  =  h  ->  (
f  e.  Y  <->  h  e.  Y ) )
27263anbi2d 1259 . . . . . . . 8  |-  ( f  =  h  ->  (
( ph  /\  f  e.  Y  /\  g  e.  Y )  <->  ( ph  /\  h  e.  Y  /\  g  e.  Y )
) )
2818oveq1d 6088 . . . . . . . . . 10  |-  ( f  =  h  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( h `
 t )  x.  ( g `  t
) ) )
2928mpteq2dv 4288 . . . . . . . . 9  |-  ( f  =  h  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( h `  t )  x.  ( g `  t ) ) ) )
3029eleq1d 2501 . . . . . . . 8  |-  ( f  =  h  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  Y  <->  ( t  e.  T  |->  ( ( h `  t
)  x.  ( g `
 t ) ) )  e.  Y ) )
3127, 30imbi12d 312 . . . . . . 7  |-  ( f  =  h  ->  (
( ( ph  /\  f  e.  Y  /\  g  e.  Y )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  Y
)  <->  ( ( ph  /\  h  e.  Y  /\  g  e.  Y )  ->  ( t  e.  T  |->  ( ( h `  t )  x.  (
g `  t )
) )  e.  Y
) ) )
32 eleq1 2495 . . . . . . . . 9  |-  ( g  =  l  ->  (
g  e.  Y  <->  l  e.  Y ) )
33323anbi3d 1260 . . . . . . . 8  |-  ( g  =  l  ->  (
( ph  /\  h  e.  Y  /\  g  e.  Y )  <->  ( ph  /\  h  e.  Y  /\  l  e.  Y )
) )
3419oveq2d 6089 . . . . . . . . . 10  |-  ( g  =  l  ->  (
( h `  t
)  x.  ( g `
 t ) )  =  ( ( h `
 t )  x.  ( l `  t
) ) )
3534mpteq2dv 4288 . . . . . . . . 9  |-  ( g  =  l  ->  (
t  e.  T  |->  ( ( h `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( h `  t )  x.  ( l `  t ) ) ) )
3635eleq1d 2501 . . . . . . . 8  |-  ( g  =  l  ->  (
( t  e.  T  |->  ( ( h `  t )  x.  (
g `  t )
) )  e.  Y  <->  ( t  e.  T  |->  ( ( h `  t
)  x.  ( l `
 t ) ) )  e.  Y ) )
3733, 36imbi12d 312 . . . . . . 7  |-  ( g  =  l  ->  (
( ( ph  /\  h  e.  Y  /\  g  e.  Y )  ->  ( t  e.  T  |->  ( ( h `  t )  x.  (
g `  t )
) )  e.  Y
)  <->  ( ( ph  /\  h  e.  Y  /\  l  e.  Y )  ->  ( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  Y
) ) )
38 fmulcl.6 . . . . . . 7  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  Y )
3931, 37, 38vtocl2g 3007 . . . . . 6  |-  ( ( h  e.  Y  /\  l  e.  Y )  ->  ( ( ph  /\  h  e.  Y  /\  l  e.  Y )  ->  ( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  Y
) )
4025, 39mpcom 34 . . . . 5  |-  ( (
ph  /\  h  e.  Y  /\  l  e.  Y
)  ->  ( t  e.  T  |->  ( ( h `  t )  x.  ( l `  t ) ) )  e.  Y )
41403expb 1154 . . . 4  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
( t  e.  T  |->  ( ( h `  t )  x.  (
l `  t )
) )  e.  Y
)
4224, 41eqeltrd 2509 . . 3  |-  ( (
ph  /\  ( h  e.  Y  /\  l  e.  Y ) )  -> 
( h P l )  e.  Y )
434, 11, 42seqcl 11335 . 2  |-  ( ph  ->  (  seq  1 ( P ,  U ) `
 N )  e.  Y )
441, 43syl5eqel 2519 1  |-  ( ph  ->  X  e.  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948    C_ wss 3312    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1c1 8983    x. cmul 8987   ZZ>=cuz 10480   ...cfz 11035    seq cseq 11315
This theorem is referenced by:  fmuldfeqlem1  27679  stoweidlem51  27767
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-seq 11316
  Copyright terms: Public domain W3C validator