MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fn0g Unicode version

Theorem fn0g 14595
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g  |-  0g  Fn  _V

Proof of Theorem fn0g
Dummy variables  e 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 5339 . 2  |-  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  e.  _V
2 df-0g 13614 . 2  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
31, 2fnmpti 5477 1  |-  0g  Fn  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   _Vcvv 2873   iotacio 5320    Fn wfn 5353   ` cfv 5358  (class class class)co 5981   Basecbs 13356   +g cplusg 13416   0gc0g 13610
This theorem is referenced by:  prdsidlem  14614  pws0g  14618  prdsinvlem  14813  pws1  15609  dsmmbas2  26709  frlmbas  26729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fn 5361  df-0g 13614
  Copyright terms: Public domain W3C validator