Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnafvelrn Unicode version

Theorem fnafvelrn 27357
Description: A function's value belongs to its range, analogous to fnfvelrn 5745. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fnafvelrn  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F''' B )  e.  ran  F )

Proof of Theorem fnafvelrn
StepHypRef Expression
1 afvelrn 27356 . 2  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F''' B )  e.  ran  F )
21funfni 5426 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F''' B )  e.  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1710   ran crn 4772    Fn wfn 5332  '''cafv 27295
This theorem is referenced by:  fafvelrn  27358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-iota 5301  df-fun 5339  df-fn 5340  df-fv 5345  df-dfat 27297  df-afv 27298
  Copyright terms: Public domain W3C validator