MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbrfvb Unicode version

Theorem fnbrfvb 5563
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )

Proof of Theorem fnbrfvb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( F `
 B )  =  ( F `  B
)
2 fvex 5539 . . . . 5  |-  ( F `
 B )  e. 
_V
3 eqeq2 2292 . . . . . . 7  |-  ( x  =  ( F `  B )  ->  (
( F `  B
)  =  x  <->  ( F `  B )  =  ( F `  B ) ) )
4 breq2 4027 . . . . . . 7  |-  ( x  =  ( F `  B )  ->  ( B F x  <->  B F
( F `  B
) ) )
53, 4bibi12d 312 . . . . . 6  |-  ( x  =  ( F `  B )  ->  (
( ( F `  B )  =  x  <-> 
B F x )  <-> 
( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) ) )
65imbi2d 307 . . . . 5  |-  ( x  =  ( F `  B )  ->  (
( ( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  x  <->  B F x ) )  <->  ( ( F  Fn  A  /\  B  e.  A )  ->  (
( F `  B
)  =  ( F `
 B )  <->  B F
( F `  B
) ) ) ) )
7 fneu 5348 . . . . . 6  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! x  B F x )
8 tz6.12c 5547 . . . . . 6  |-  ( E! x  B F x  ->  ( ( F `
 B )  =  x  <->  B F x ) )
97, 8syl 15 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  x  <-> 
B F x ) )
102, 6, 9vtocl 2838 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) )
111, 10mpbii 202 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  B F ( F `
 B ) )
12 breq2 4027 . . 3  |-  ( ( F `  B )  =  C  ->  ( B F ( F `  B )  <->  B F C ) )
1311, 12syl5ibcom 211 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  ->  B F C ) )
14 fnfun 5341 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
15 funbrfv 5561 . . . 4  |-  ( Fun 
F  ->  ( B F C  ->  ( F `
 B )  =  C ) )
1614, 15syl 15 . . 3  |-  ( F  Fn  A  ->  ( B F C  ->  ( F `  B )  =  C ) )
1716adantr 451 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( B F C  ->  ( F `  B )  =  C ) )
1813, 17impbid 183 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E!weu 2143   class class class wbr 4023   Fun wfun 5249    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  fnopfvb  5564  funbrfvb  5565  dffn5  5568  fnsnfv  5582  fndmdif  5629  dffo4  5676  dff13  5783  isomin  5834  isoini  5835  1stconst  6207  2ndconst  6208  fsplit  6223  seqomlem3  6464  seqomlem4  6465  nqerrel  8556  imasleval  13443  znleval  16508  elnlfn  22508  adjbd1o  22665  feqmptdf  23228  br1steq  24130  br2ndeq  24131  trpredpred  24231  fvbigcup  24442  fvsingle  24459  imageval  24469  brfullfun  24486  axcontlem5  24596  pw2f1ocnv  27130  funressnfv  27991  fnbrafvb  28016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263
  Copyright terms: Public domain W3C validator