MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvima2 Unicode version

Theorem fncnvima2 5663
Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fncnvima2  |-  ( F  Fn  A  ->  ( `' F " B )  =  { x  e.  A  |  ( F `
 x )  e.  B } )
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem fncnvima2
StepHypRef Expression
1 elpreima 5661 . . 3  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " B )  <-> 
( x  e.  A  /\  ( F `  x
)  e.  B ) ) )
21abbi2dv 2411 . 2  |-  ( F  Fn  A  ->  ( `' F " B )  =  { x  |  ( x  e.  A  /\  ( F `  x
)  e.  B ) } )
3 df-rab 2565 . 2  |-  { x  e.  A  |  ( F `  x )  e.  B }  =  {
x  |  ( x  e.  A  /\  ( F `  x )  e.  B ) }
42, 3syl6eqr 2346 1  |-  ( F  Fn  A  ->  ( `' F " B )  =  { x  e.  A  |  ( F `
 x )  e.  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   {crab 2560   `'ccnv 4704   "cima 4708    Fn wfn 5266   ` cfv 5271
This theorem is referenced by:  fniniseg2  5664  fnniniseg2  5665  r0cld  17445  xppreima  23226  xpinpreima  23305  xpinpreima2  23306  orvcval2  23674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279
  Copyright terms: Public domain W3C validator