MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnco Structured version   Unicode version

Theorem fnco 5545
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnco  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G
)  Fn  B )

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 5534 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
2 fnfun 5534 . . . 4  |-  ( G  Fn  B  ->  Fun  G )
3 funco 5483 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
41, 2, 3syl2an 464 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  Fun  ( F  o.  G ) )
543adant3 977 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  Fun  ( F  o.  G ) )
6 fndm 5536 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
76sseq2d 3368 . . . . . 6  |-  ( F  Fn  A  ->  ( ran  G  C_  dom  F  <->  ran  G  C_  A ) )
87biimpar 472 . . . . 5  |-  ( ( F  Fn  A  /\  ran  G  C_  A )  ->  ran  G  C_  dom  F )
9 dmcosseq 5129 . . . . 5  |-  ( ran 
G  C_  dom  F  ->  dom  ( F  o.  G
)  =  dom  G
)
108, 9syl 16 . . . 4  |-  ( ( F  Fn  A  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  dom  G )
11103adant2 976 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  dom  G )
12 fndm 5536 . . . 4  |-  ( G  Fn  B  ->  dom  G  =  B )
13123ad2ant2 979 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  G  =  B )
1411, 13eqtrd 2467 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  dom  ( F  o.  G )  =  B )
15 df-fn 5449 . 2  |-  ( ( F  o.  G )  Fn  B  <->  ( Fun  ( F  o.  G
)  /\  dom  ( F  o.  G )  =  B ) )
165, 14, 15sylanbrc 646 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G
)  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    C_ wss 3312   dom cdm 4870   ran crn 4871    o. ccom 4874   Fun wfun 5440    Fn wfn 5441
This theorem is referenced by:  fco  5592  fnfco  5601  fipreima  7404  prdsinvlem  14916  prdsmgp  15706  pws1  15712  upxp  17645  uptx  17647  evlslem1  19926  0vfval  22075  xppreima2  24050  volsupnfl  26214  frlmbas  27155  frlmup3  27184  frlmup4  27185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-fun 5448  df-fn 5449
  Copyright terms: Public domain W3C validator