Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fndifnfp Structured version   Unicode version

Theorem fndifnfp 26718
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fndifnfp  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  { x  e.  A  |  ( F `  x )  =/=  x } )
Distinct variable groups:    x, F    x, A

Proof of Theorem fndifnfp
StepHypRef Expression
1 dffn2 5584 . . . . . . . 8  |-  ( F  Fn  A  <->  F : A
--> _V )
2 fssxp 5594 . . . . . . . 8  |-  ( F : A --> _V  ->  F 
C_  ( A  X.  _V ) )
31, 2sylbi 188 . . . . . . 7  |-  ( F  Fn  A  ->  F  C_  ( A  X.  _V ) )
4 ssdif0 3678 . . . . . . 7  |-  ( F 
C_  ( A  X.  _V )  <->  ( F  \ 
( A  X.  _V ) )  =  (/) )
53, 4sylib 189 . . . . . 6  |-  ( F  Fn  A  ->  ( F  \  ( A  X.  _V ) )  =  (/) )
65uneq2d 3493 . . . . 5  |-  ( F  Fn  A  ->  (
( F  \  _I  )  u.  ( F  \  ( A  X.  _V ) ) )  =  ( ( F  \  _I  )  u.  (/) ) )
7 un0 3644 . . . . 5  |-  ( ( F  \  _I  )  u.  (/) )  =  ( F  \  _I  )
86, 7syl6req 2484 . . . 4  |-  ( F  Fn  A  ->  ( F  \  _I  )  =  ( ( F  \  _I  )  u.  ( F  \  ( A  X.  _V ) ) ) )
9 df-res 4882 . . . . . 6  |-  (  _I  |`  A )  =  (  _I  i^i  ( A  X.  _V ) )
109difeq2i 3454 . . . . 5  |-  ( F 
\  (  _I  |`  A ) )  =  ( F 
\  (  _I  i^i  ( A  X.  _V )
) )
11 difindi 3587 . . . . 5  |-  ( F 
\  (  _I  i^i  ( A  X.  _V )
) )  =  ( ( F  \  _I  )  u.  ( F  \  ( A  X.  _V ) ) )
1210, 11eqtri 2455 . . . 4  |-  ( F 
\  (  _I  |`  A ) )  =  ( ( F  \  _I  )  u.  ( F  \  ( A  X.  _V ) ) )
138, 12syl6eqr 2485 . . 3  |-  ( F  Fn  A  ->  ( F  \  _I  )  =  ( F  \  (  _I  |`  A ) ) )
1413dmeqd 5064 . 2  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  dom  ( F  \ 
(  _I  |`  A ) ) )
15 fnresi 5554 . . 3  |-  (  _I  |`  A )  Fn  A
16 fndmdif 5826 . . 3  |-  ( ( F  Fn  A  /\  (  _I  |`  A )  Fn  A )  ->  dom  ( F  \  (  _I  |`  A ) )  =  { x  e.  A  |  ( F `
 x )  =/=  ( (  _I  |`  A ) `
 x ) } )
1715, 16mpan2 653 . 2  |-  ( F  Fn  A  ->  dom  ( F  \  (  _I  |`  A ) )  =  { x  e.  A  |  ( F `
 x )  =/=  ( (  _I  |`  A ) `
 x ) } )
18 fvresi 5916 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
1918neeq2d 2612 . . . 4  |-  ( x  e.  A  ->  (
( F `  x
)  =/=  ( (  _I  |`  A ) `  x )  <->  ( F `  x )  =/=  x
) )
2019rabbiia 2938 . . 3  |-  { x  e.  A  |  ( F `  x )  =/=  ( (  _I  |`  A ) `
 x ) }  =  { x  e.  A  |  ( F `
 x )  =/=  x }
2120a1i 11 . 2  |-  ( F  Fn  A  ->  { x  e.  A  |  ( F `  x )  =/=  ( (  _I  |`  A ) `
 x ) }  =  { x  e.  A  |  ( F `
 x )  =/=  x } )
2214, 17, 213eqtrd 2471 1  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  { x  e.  A  |  ( F `  x )  =/=  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725    =/= wne 2598   {crab 2701   _Vcvv 2948    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620    _I cid 4485    X. cxp 4868   dom cdm 4870    |` cres 4872    Fn wfn 5441   -->wf 5442   ` cfv 5446
This theorem is referenced by:  fnelnfp  26719  fnnfpeq0  26720  f1omvdcnv  27345  pmtrmvd  27356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454
  Copyright terms: Public domain W3C validator