MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdif Unicode version

Theorem fndmdif 5712
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdif  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
Distinct variable groups:    x, F    x, G    x, A

Proof of Theorem fndmdif
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 difss 3379 . . . . 5  |-  ( F 
\  G )  C_  F
2 dmss 4960 . . . . 5  |-  ( ( F  \  G ) 
C_  F  ->  dom  ( F  \  G ) 
C_  dom  F )
31, 2ax-mp 8 . . . 4  |-  dom  ( F  \  G )  C_  dom  F
4 fndm 5425 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
54adantr 451 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  F  =  A )
63, 5syl5sseq 3302 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  C_  A
)
7 dfss1 3449 . . 3  |-  ( dom  ( F  \  G
)  C_  A  <->  ( A  i^i  dom  ( F  \  G ) )  =  dom  ( F  \  G ) )
86, 7sylib 188 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  i^i  dom  ( F  \  G ) )  =  dom  ( F  \  G ) )
9 vex 2867 . . . . 5  |-  x  e. 
_V
109eldm 4958 . . . 4  |-  ( x  e.  dom  ( F 
\  G )  <->  E. y  x ( F  \  G ) y )
11 eqcom 2360 . . . . . . . . 9  |-  ( ( F `  x )  =  ( G `  x )  <->  ( G `  x )  =  ( F `  x ) )
12 fnbrfvb 5646 . . . . . . . . 9  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( ( G `  x )  =  ( F `  x )  <-> 
x G ( F `
 x ) ) )
1311, 12syl5bb 248 . . . . . . . 8  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  ( G `  x )  <-> 
x G ( F `
 x ) ) )
1413adantll 694 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( F `  x
)  =  ( G `
 x )  <->  x G
( F `  x
) ) )
1514necon3abid 2554 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( F `  x
)  =/=  ( G `
 x )  <->  -.  x G ( F `  x ) ) )
16 fvex 5622 . . . . . . 7  |-  ( F `
 x )  e. 
_V
17 breq2 4108 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
x G y  <->  x G
( F `  x
) ) )
1817notbid 285 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  ( -.  x G y  <->  -.  x G ( F `  x ) ) )
1916, 18ceqsexv 2899 . . . . . 6  |-  ( E. y ( y  =  ( F `  x
)  /\  -.  x G y )  <->  -.  x G ( F `  x ) )
2015, 19syl6bbr 254 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( F `  x
)  =/=  ( G `
 x )  <->  E. y
( y  =  ( F `  x )  /\  -.  x G y ) ) )
21 eqcom 2360 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
22 fnbrfvb 5646 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
2321, 22syl5bb 248 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( y  =  ( F `  x )  <-> 
x F y ) )
2423adantlr 695 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
y  =  ( F `
 x )  <->  x F
y ) )
2524anbi1d 685 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( y  =  ( F `  x )  /\  -.  x G y )  <->  ( x F y  /\  -.  x G y ) ) )
26 brdif 4152 . . . . . . 7  |-  ( x ( F  \  G
) y  <->  ( x F y  /\  -.  x G y ) )
2725, 26syl6bbr 254 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( y  =  ( F `  x )  /\  -.  x G y )  <->  x ( F  \  G ) y ) )
2827exbidv 1626 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( E. y ( y  =  ( F `  x
)  /\  -.  x G y )  <->  E. y  x ( F  \  G ) y ) )
2920, 28bitr2d 245 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( E. y  x ( F  \  G ) y  <-> 
( F `  x
)  =/=  ( G `
 x ) ) )
3010, 29syl5bb 248 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
x  e.  dom  ( F  \  G )  <->  ( F `  x )  =/=  ( G `  x )
) )
3130rabbi2dva 3453 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  i^i  dom  ( F  \  G ) )  =  { x  e.  A  |  ( F `  x )  =/=  ( G `  x
) } )
328, 31eqtr3d 2392 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1541    = wceq 1642    e. wcel 1710    =/= wne 2521   {crab 2623    \ cdif 3225    i^i cin 3227    C_ wss 3228   class class class wbr 4104   dom cdm 4771    Fn wfn 5332   ` cfv 5337
This theorem is referenced by:  fndmdifcom  5713  fndmdifeq0  5714  wemapso2lem  7355  wemapso2  7357  ptcmplem2  17849  fndifnfp  26079  dsmmbas2  26526  frlmbas  26546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-iota 5301  df-fun 5339  df-fn 5340  df-fv 5345
  Copyright terms: Public domain W3C validator