MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdifeq0 Unicode version

Theorem fndmdifeq0 5631
Description: The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdifeq0  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F 
\  G )  =  (/) 
<->  F  =  G ) )

Proof of Theorem fndmdifeq0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fndmdif 5629 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
21eqeq1d 2291 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F 
\  G )  =  (/) 
<->  { x  e.  A  |  ( F `  x )  =/=  ( G `  x ) }  =  (/) ) )
3 eqfnfv 5622 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
4 rabeq0 3476 . . . 4  |-  ( { x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) }  =  (/)  <->  A. x  e.  A  -.  ( F `  x
)  =/=  ( G `
 x ) )
5 nne 2450 . . . . 5  |-  ( -.  ( F `  x
)  =/=  ( G `
 x )  <->  ( F `  x )  =  ( G `  x ) )
65ralbii 2567 . . . 4  |-  ( A. x  e.  A  -.  ( F `  x )  =/=  ( G `  x )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
74, 6bitri 240 . . 3  |-  ( { x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) }  =  (/)  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
83, 7syl6rbbr 255 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( { x  e.  A  |  ( F `
 x )  =/=  ( G `  x
) }  =  (/)  <->  F  =  G ) )
92, 8bitrd 244 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F 
\  G )  =  (/) 
<->  F  =  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    =/= wne 2446   A.wral 2543   {crab 2547    \ cdif 3149   (/)c0 3455   dom cdm 4689    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  wemapso  7266  wemapso2  7267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263
  Copyright terms: Public domain W3C validator