Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin1 Structured version   Unicode version

Theorem fnejoin1 26397
Description: Join of equivalence classes under the fineness relation-part one. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A Fne if ( S  =  (/) ,  { X } ,  U. S ) )
Distinct variable groups:    y, A    y, S    y, X
Allowed substitution hint:    V( y)

Proof of Theorem fnejoin1
StepHypRef Expression
1 elssuni 4043 . . . . . 6  |-  ( A  e.  S  ->  A  C_ 
U. S )
213ad2ant3 980 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A  C_ 
U. S )
32unissd 4039 . . . 4  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. A  C_ 
U. U. S )
4 eqimss2 3401 . . . . . . . . . 10  |-  ( X  =  U. y  ->  U. y  C_  X )
5 sspwuni 4176 . . . . . . . . . 10  |-  ( y 
C_  ~P X  <->  U. y  C_  X )
64, 5sylibr 204 . . . . . . . . 9  |-  ( X  =  U. y  -> 
y  C_  ~P X
)
76ralimi 2781 . . . . . . . 8  |-  ( A. y  e.  S  X  =  U. y  ->  A. y  e.  S  y  C_  ~P X )
873ad2ant2 979 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A. y  e.  S  y  C_  ~P X )
9 unissb 4045 . . . . . . 7  |-  ( U. S  C_  ~P X  <->  A. y  e.  S  y  C_  ~P X )
108, 9sylibr 204 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. S  C_ 
~P X )
11 sspwuni 4176 . . . . . 6  |-  ( U. S  C_  ~P X  <->  U. U. S  C_  X )
1210, 11sylib 189 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. U. S  C_  X )
13 unieq 4024 . . . . . . . 8  |-  ( y  =  A  ->  U. y  =  U. A )
1413eqeq2d 2447 . . . . . . 7  |-  ( y  =  A  ->  ( X  =  U. y  <->  X  =  U. A ) )
1514rspccva 3051 . . . . . 6  |-  ( ( A. y  e.  S  X  =  U. y  /\  A  e.  S
)  ->  X  =  U. A )
16153adant1 975 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  X  =  U. A )
1712, 16sseqtrd 3384 . . . 4  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. U. S  C_  U. A )
183, 17eqssd 3365 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. A  =  U. U. S )
19 pwexg 4383 . . . . . . 7  |-  ( X  e.  V  ->  ~P X  e.  _V )
20193ad2ant1 978 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ~P X  e.  _V )
2120, 10ssexd 4350 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. S  e.  _V )
22 bastg 17031 . . . . 5  |-  ( U. S  e.  _V  ->  U. S  C_  ( topGen ` 
U. S ) )
2321, 22syl 16 . . . 4  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. S  C_  ( topGen `  U. S ) )
242, 23sstrd 3358 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A  C_  ( topGen `  U. S ) )
25 eqid 2436 . . . 4  |-  U. A  =  U. A
26 eqid 2436 . . . 4  |-  U. U. S  =  U. U. S
2725, 26isfne4 26349 . . 3  |-  ( A Fne U. S  <->  ( U. A  =  U. U. S  /\  A  C_  ( topGen ` 
U. S ) ) )
2818, 24, 27sylanbrc 646 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A Fne U. S )
29 ne0i 3634 . . . 4  |-  ( A  e.  S  ->  S  =/=  (/) )
30293ad2ant3 980 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  S  =/=  (/) )
31 ifnefalse 3747 . . 3  |-  ( S  =/=  (/)  ->  if ( S  =  (/) ,  { X } ,  U. S
)  =  U. S
)
3230, 31syl 16 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  if ( S  =  (/) ,  { X } ,  U. S
)  =  U. S
)
3328, 32breqtrrd 4238 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A Fne if ( S  =  (/) ,  { X } ,  U. S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   _Vcvv 2956    C_ wss 3320   (/)c0 3628   ifcif 3739   ~Pcpw 3799   {csn 3814   U.cuni 4015   class class class wbr 4212   ` cfv 5454   topGenctg 13665   Fnecfne 26339
This theorem is referenced by:  fnejoin2  26398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-topgen 13667  df-fne 26343
  Copyright terms: Public domain W3C validator