Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin2 Structured version   Unicode version

Theorem fnejoin2 26412
Description: Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
Distinct variable groups:    x, y, S    x, V    x, X, y    x, T
Allowed substitution hints:    T( y)    V( y)

Proof of Theorem fnejoin2
StepHypRef Expression
1 unisng 4034 . . . . . . . . 9  |-  ( X  e.  V  ->  U. { X }  =  X
)
21eqcomd 2443 . . . . . . . 8  |-  ( X  e.  V  ->  X  =  U. { X }
)
32adantr 453 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. { X } )
4 iftrue 3747 . . . . . . . . 9  |-  ( S  =  (/)  ->  if ( S  =  (/) ,  { X } ,  U. S
)  =  { X } )
54unieqd 4028 . . . . . . . 8  |-  ( S  =  (/)  ->  U. if ( S  =  (/) ,  { X } ,  U. S
)  =  U. { X } )
65eqeq2d 2449 . . . . . . 7  |-  ( S  =  (/)  ->  ( X  =  U. if ( S  =  (/) ,  { X } ,  U. S
)  <->  X  =  U. { X } ) )
73, 6syl5ibrcom 215 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =  (/)  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) ) )
8 n0 3639 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
9 unieq 4026 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  U. y  =  U. x )
109eqeq2d 2449 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( X  =  U. y  <->  X  =  U. x ) )
1110rspccva 3053 . . . . . . . . . . 11  |-  ( ( A. y  e.  S  X  =  U. y  /\  x  e.  S
)  ->  X  =  U. x )
12113adant1 976 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. x )
13 fnejoin1 26411 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  x Fne if ( S  =  (/) ,  { X } ,  U. S ) )
14 eqid 2438 . . . . . . . . . . . 12  |-  U. x  =  U. x
15 eqid 2438 . . . . . . . . . . . 12  |-  U. if ( S  =  (/) ,  { X } ,  U. S
)  =  U. if ( S  =  (/) ,  { X } ,  U. S
)
1614, 15fnebas 26367 . . . . . . . . . . 11  |-  ( x Fne if ( S  =  (/) ,  { X } ,  U. S )  ->  U. x  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
1713, 16syl 16 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  U. x  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
1812, 17eqtrd 2470 . . . . . . . . 9  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
19183expia 1156 . . . . . . . 8  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( x  e.  S  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) ) )
2019exlimdv 1647 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( E. x  x  e.  S  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) ) )
218, 20syl5bi 210 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =/=  (/)  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) ) )
227, 21pm2.61dne 2683 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) )
23 eqid 2438 . . . . . 6  |-  U. T  =  U. T
2415, 23fnebas 26367 . . . . 5  |-  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  U. if ( S  =  (/) ,  { X } ,  U. S )  =  U. T )
2522, 24sylan9eq 2490 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  if ( S  =  (/) ,  { X } ,  U. S
) Fne T )  ->  X  =  U. T )
2625ex 425 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  X  =  U. T ) )
27 fnetr 26380 . . . . . . 7  |-  ( ( x Fne if ( S  =  (/) ,  { X } ,  U. S
)  /\  if ( S  =  (/) ,  { X } ,  U. S
) Fne T )  ->  x Fne T
)
2827ex 425 . . . . . 6  |-  ( x Fne if ( S  =  (/) ,  { X } ,  U. S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S
) Fne T  ->  x Fne T ) )
2913, 28syl 16 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  x Fne T ) )
30293expa 1154 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  x  e.  S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  x Fne T ) )
3130ralrimdva 2798 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  A. x  e.  S  x Fne T ) )
3226, 31jcad 521 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
3322adantr 453 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) )
34 simprl 734 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  =  U. T )
3533, 34eqtr3d 2472 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. if ( S  =  (/) ,  { X } ,  U. S )  = 
U. T )
36 sseq1 3371 . . . . 5  |-  ( { X }  =  if ( S  =  (/) ,  { X } ,  U. S )  ->  ( { X }  C_  ( topGen `
 T )  <->  if ( S  =  (/) ,  { X } ,  U. S
)  C_  ( topGen `  T ) ) )
37 sseq1 3371 . . . . 5  |-  ( U. S  =  if ( S  =  (/) ,  { X } ,  U. S
)  ->  ( U. S  C_  ( topGen `  T
)  <->  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `  T )
) )
38 elex 2966 . . . . . . . . . . . 12  |-  ( X  e.  V  ->  X  e.  _V )
3938ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  e.  _V )
4034, 39eqeltrrd 2513 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. T  e.  _V )
41 uniexb 4755 . . . . . . . . . 10  |-  ( T  e.  _V  <->  U. T  e. 
_V )
4240, 41sylibr 205 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  T  e.  _V )
43 ssid 3369 . . . . . . . . 9  |-  T  C_  T
44 eltg3i 17031 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  T  C_  T )  ->  U. T  e.  ( topGen `
 T ) )
4542, 43, 44sylancl 645 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. T  e.  ( topGen `
 T ) )
4634, 45eqeltrd 2512 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  e.  ( topGen `  T ) )
4746snssd 3945 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  { X }  C_  ( topGen `
 T ) )
4847adantr 453 . . . . 5  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  S  =  (/) )  ->  { X }  C_  ( topGen `  T )
)
49 simplrr 739 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  A. x  e.  S  x Fne T )
50 fnetg 26368 . . . . . . . 8  |-  ( x Fne T  ->  x  C_  ( topGen `  T )
)
5150ralimi 2783 . . . . . . 7  |-  ( A. x  e.  S  x Fne T  ->  A. x  e.  S  x  C_  ( topGen `
 T ) )
5249, 51syl 16 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  A. x  e.  S  x  C_  ( topGen `
 T ) )
53 unissb 4047 . . . . . 6  |-  ( U. S  C_  ( topGen `  T
)  <->  A. x  e.  S  x  C_  ( topGen `  T
) )
5452, 53sylibr 205 . . . . 5  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  U. S  C_  ( topGen `  T )
)
5536, 37, 48, 54ifbothda 3771 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `
 T ) )
5615, 23isfne4 26363 . . . 4  |-  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( U. if ( S  =  (/) ,  { X } ,  U. S )  =  U. T  /\  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `
 T ) ) )
5735, 55, 56sylanbrc 647 . . 3  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  if ( S  =  (/) ,  { X } ,  U. S ) Fne T
)
5857ex 425 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( ( X  = 
U. T  /\  A. x  e.  S  x Fne T )  ->  if ( S  =  (/) ,  { X } ,  U. S
) Fne T ) )
5932, 58impbid 185 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   _Vcvv 2958    C_ wss 3322   (/)c0 3630   ifcif 3741   {csn 3816   U.cuni 4017   class class class wbr 4215   ` cfv 5457   topGenctg 13670   Fnecfne 26353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-topgen 13672  df-fne 26357
  Copyright terms: Public domain W3C validator