Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnelnfp Unicode version

Theorem fnelnfp 26169
Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fnelnfp  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( X  e.  dom  ( F  \  _I  )  <->  ( F `  X )  =/=  X ) )

Proof of Theorem fnelnfp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fndifnfp 26168 . . 3  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  { x  e.  A  |  ( F `  x )  =/=  x } )
21eleq2d 2350 . 2  |-  ( F  Fn  A  ->  ( X  e.  dom  ( F 
\  _I  )  <->  X  e.  { x  e.  A  | 
( F `  x
)  =/=  x }
) )
3 fveq2 5525 . . . 4  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
4 id 19 . . . 4  |-  ( x  =  X  ->  x  =  X )
53, 4neeq12d 2461 . . 3  |-  ( x  =  X  ->  (
( F `  x
)  =/=  x  <->  ( F `  X )  =/=  X
) )
65elrab3 2924 . 2  |-  ( X  e.  A  ->  ( X  e.  { x  e.  A  |  ( F `  x )  =/=  x }  <->  ( F `  X )  =/=  X
) )
72, 6sylan9bb 680 1  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( X  e.  dom  ( F  \  _I  )  <->  ( F `  X )  =/=  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547    \ cdif 3149    _I cid 4304   dom cdm 4689    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  f1omvdmvd  26798  f1omvdconj  26801  f1otrspeq  26802  pmtrfinv  26814  symggen  26823  psgnunilem1  26828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
  Copyright terms: Public domain W3C validator