Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet1 Unicode version

Theorem fnemeet1 26315
Description: The meet of a collection of equivalence classes of covers with respect to fineness. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) Fne A )
Distinct variable groups:    y, t, A    t, S, y    t, V    t, X, y
Allowed substitution hint:    V( y)

Proof of Theorem fnemeet1
StepHypRef Expression
1 unitg 16705 . . . . . . . 8  |-  ( t  e.  S  ->  U. ( topGen `
 t )  = 
U. t )
21adantl 452 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. ( topGen `
 t )  = 
U. t )
3 unieq 3836 . . . . . . . . . 10  |-  ( y  =  t  ->  U. y  =  U. t )
43eqeq2d 2294 . . . . . . . . 9  |-  ( y  =  t  ->  ( X  =  U. y  <->  X  =  U. t ) )
54rspccva 2883 . . . . . . . 8  |-  ( ( A. y  e.  S  X  =  U. y  /\  t  e.  S
)  ->  X  =  U. t )
653ad2antl2 1118 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  X  =  U. t )
72, 6eqtr4d 2318 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. ( topGen `
 t )  =  X )
8 eqimss 3230 . . . . . 6  |-  ( U. ( topGen `  t )  =  X  ->  U. ( topGen `
 t )  C_  X )
97, 8syl 15 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. ( topGen `
 t )  C_  X )
10 sspwuni 3987 . . . . 5  |-  ( (
topGen `  t )  C_  ~P X  <->  U. ( topGen `  t
)  C_  X )
119, 10sylibr 203 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  ( topGen `
 t )  C_  ~P X )
1211ralrimiva 2626 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A. t  e.  S  ( topGen `  t )  C_  ~P X )
13 ne0i 3461 . . . 4  |-  ( A  e.  S  ->  S  =/=  (/) )
14133ad2ant3 978 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  S  =/=  (/) )
15 riinn0 3976 . . 3  |-  ( ( A. t  e.  S  ( topGen `  t )  C_ 
~P X  /\  S  =/=  (/) )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
|^|_ t  e.  S  ( topGen `  t )
)
1612, 14, 15syl2anc 642 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) )  = 
|^|_ t  e.  S  ( topGen `  t )
)
17 simp3 957 . . . . . . . 8  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A  e.  S )
18 ssid 3197 . . . . . . . 8  |-  ( topGen `  A )  C_  ( topGen `
 A )
19 fveq2 5525 . . . . . . . . . 10  |-  ( t  =  A  ->  ( topGen `
 t )  =  ( topGen `  A )
)
2019sseq1d 3205 . . . . . . . . 9  |-  ( t  =  A  ->  (
( topGen `  t )  C_  ( topGen `  A )  <->  (
topGen `  A )  C_  ( topGen `  A )
) )
2120rspcev 2884 . . . . . . . 8  |-  ( ( A  e.  S  /\  ( topGen `  A )  C_  ( topGen `  A )
)  ->  E. t  e.  S  ( topGen `  t )  C_  ( topGen `
 A ) )
2217, 18, 21sylancl 643 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  E. t  e.  S  ( topGen `  t )  C_  ( topGen `
 A ) )
23 iinss 3953 . . . . . . 7  |-  ( E. t  e.  S  (
topGen `  t )  C_  ( topGen `  A )  -> 
|^|_ t  e.  S  ( topGen `  t )  C_  ( topGen `  A )
)
2422, 23syl 15 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  |^|_ t  e.  S  ( topGen `  t )  C_  ( topGen `
 A ) )
25 uniss 3848 . . . . . 6  |-  ( |^|_ t  e.  S  ( topGen `
 t )  C_  ( topGen `  A )  ->  U. |^|_ t  e.  S  ( topGen `  t )  C_ 
U. ( topGen `  A
) )
2624, 25syl 15 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. |^|_ t  e.  S  ( topGen `
 t )  C_  U. ( topGen `  A )
)
27 unitg 16705 . . . . . 6  |-  ( A  e.  S  ->  U. ( topGen `
 A )  = 
U. A )
28273ad2ant3 978 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. ( topGen `
 A )  = 
U. A )
2926, 28sseqtrd 3214 . . . 4  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. |^|_ t  e.  S  ( topGen `
 t )  C_  U. A )
30 unieq 3836 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  U. y  =  U. A )
3130eqeq2d 2294 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( X  =  U. y  <->  X  =  U. A ) )
3231rspccva 2883 . . . . . . . . . . 11  |-  ( ( A. y  e.  S  X  =  U. y  /\  A  e.  S
)  ->  X  =  U. A )
33323adant1 973 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  X  =  U. A )
3433adantr 451 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  X  =  U. A )
3534, 6eqtr3d 2317 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. A  =  U. t )
36 simpr 447 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  t  e.  S )
37 ssid 3197 . . . . . . . . 9  |-  t  C_  t
38 eltg3i 16699 . . . . . . . . 9  |-  ( ( t  e.  S  /\  t  C_  t )  ->  U. t  e.  ( topGen `
 t ) )
3936, 37, 38sylancl 643 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. t  e.  ( topGen `  t )
)
4035, 39eqeltrd 2357 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S
)  /\  t  e.  S )  ->  U. A  e.  ( topGen `  t )
)
4140ralrimiva 2626 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A. t  e.  S  U. A  e.  ( topGen `  t )
)
42 uniexg 4517 . . . . . . . 8  |-  ( A  e.  S  ->  U. A  e.  _V )
43423ad2ant3 978 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. A  e.  _V )
44 eliin 3910 . . . . . . 7  |-  ( U. A  e.  _V  ->  ( U. A  e.  |^|_ t  e.  S  ( topGen `
 t )  <->  A. t  e.  S  U. A  e.  ( topGen `  t )
) )
4543, 44syl 15 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( U. A  e.  |^|_ t  e.  S  ( topGen `  t )  <->  A. t  e.  S  U. A  e.  ( topGen `  t )
) )
4641, 45mpbird 223 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. A  e.  |^|_ t  e.  S  ( topGen `  t )
)
47 elssuni 3855 . . . . 5  |-  ( U. A  e.  |^|_ t  e.  S  ( topGen `  t
)  ->  U. A  C_  U.
|^|_ t  e.  S  ( topGen `  t )
)
4846, 47syl 15 . . . 4  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. A  C_ 
U. |^|_ t  e.  S  ( topGen `  t )
)
4929, 48eqssd 3196 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  U. |^|_ t  e.  S  ( topGen `
 t )  = 
U. A )
50 eqid 2283 . . . 4  |-  U. |^|_ t  e.  S  ( topGen `
 t )  = 
U. |^|_ t  e.  S  ( topGen `  t )
51 eqid 2283 . . . 4  |-  U. A  =  U. A
5250, 51isfne4 26269 . . 3  |-  ( |^|_ t  e.  S  ( topGen `
 t ) Fne A  <->  ( U. |^|_ t  e.  S  ( topGen `
 t )  = 
U. A  /\  |^|_ t  e.  S  ( topGen `
 t )  C_  ( topGen `  A )
) )
5349, 24, 52sylanbrc 645 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  |^|_ t  e.  S  ( topGen `  t ) Fne A
)
5416, 53eqbrtrd 4043 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t ) ) Fne A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   U.cuni 3827   |^|_ciin 3906   class class class wbr 4023   ` cfv 5255   topGenctg 13342   Fnecfne 26259
This theorem is referenced by:  fnemeet2  26316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-topgen 13344  df-fne 26263
  Copyright terms: Public domain W3C validator