Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneq12d Structured version   Unicode version

Theorem fneq12d 5538
 Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1
fneq12d.2
Assertion
Ref Expression
fneq12d

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3
21fneq1d 5536 . 2
3 fneq12d.2 . . 3
43fneq2d 5537 . 2
52, 4bitrd 245 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wfn 5449 This theorem is referenced by:  seqfn  11335  sscres  14023  reschomf  14031  funcres  14093  psrvscafval  16454  ressprdsds  18401  fneq12  24046  funcoressn  27967 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-fun 5456  df-fn 5457
 Copyright terms: Public domain W3C validator