![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fneq1d | Unicode version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fneq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fneq1 5493 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 16 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem is referenced by: fneq12d 5497 f1o00 5669 f1oprswap 5676 f1ompt 5850 fmpt2d 5857 f1ocnvd 6252 offn 6275 offval2 6281 ofrfval2 6282 caofinvl 6290 omxpenlem 7168 itunifn 8253 konigthlem 8399 seqof 11335 swrdlen 11725 fsumrev 12517 fsumshft 12518 prdsdsfn 13642 imasdsfn 13695 xpscfn 13739 cidfn 13859 comffn 13886 isoval 13945 invf1o 13949 brssc 13969 cofucl 14040 1stfcl 14249 2ndfcl 14250 prfcl 14255 evlfcl 14274 curf1cl 14280 curfcl 14284 hofcl 14311 yonedainv 14333 grpinvf1o 14816 srngf1o 15897 neif 17119 fmf 17930 fncpn 19772 grpoinvf 21781 kbass2 23573 f1o3d 23994 offval2f 24033 pstmxmet 24245 ofcfn 24436 ofcfval2 24440 fprodshft 25253 fprodrev 25254 cnambfre 26154 sdclem2 26336 hbtlem7 27197 pmtrrn 27267 pmtrfrn 27268 addrfn 27544 subrfn 27545 mulvfn 27546 bnj941 28849 diafn 31517 dibfna 31637 dicfnN 31666 dihf11lem 31749 mapd1o 32131 hdmapfnN 32315 hgmapfnN 32374 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2385 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-clab 2391 df-cleq 2397 df-clel 2400 df-nfc 2529 df-rab 2675 df-v 2918 df-dif 3283 df-un 3285 df-in 3287 df-ss 3294 df-nul 3589 df-if 3700 df-sn 3780 df-pr 3781 df-op 3783 df-br 4173 df-opab 4227 df-rel 4844 df-cnv 4845 df-co 4846 df-dm 4847 df-fun 5415 df-fn 5416 |
Copyright terms: Public domain | W3C validator |