Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneqeql Structured version   Unicode version

Theorem fneqeql 5841
 Description: Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fneqeql

Proof of Theorem fneqeql
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5830 . . 3
2 eqcom 2440 . . . 4
3 rabid2 2887 . . . 4
42, 3bitri 242 . . 3
51, 4syl6bbr 256 . 2
6 fndmin 5840 . . 3
76eqeq1d 2446 . 2
85, 7bitr4d 249 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wceq 1653  wral 2707  crab 2711   cin 3321   cdm 4881   wfn 5452  cfv 5457 This theorem is referenced by:  fneqeql2  5842  fnreseql  5843  lspextmo  16137 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465
 Copyright terms: Public domain W3C validator