Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnerel Unicode version

Theorem fnerel 26267
Description: Fineness is a relation. (Contributed by Jeff Hankins, 28-Sep-2009.)
Assertion
Ref Expression
fnerel  |-  Rel  Fne

Proof of Theorem fnerel
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fne 26263 . 2  |-  Fne  =  { <. x ,  y
>.  |  ( U. x  =  U. y  /\  A. z  e.  x  z  C_  U. ( y  i^i  ~P z ) ) }
21relopabi 4811 1  |-  Rel  Fne
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623   A.wral 2543    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   Rel wrel 4694   Fnecfne 26259
This theorem is referenced by:  isfne  26268  isfne4  26269  fnetr  26286  fneval  26287  fneer  26288  fnessref  26293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696  df-fne 26263
  Copyright terms: Public domain W3C validator