MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfuc Unicode version

Theorem fnfuc 13835
Description: The FuncCat operation is a well-defined function on categories. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
fnfuc  |- FuncCat  Fn  ( Cat  X.  Cat )

Proof of Theorem fnfuc
Dummy variables  a 
b  f  g  h  t  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fuc 13834 . 2  |- FuncCat  =  ( t  e.  Cat ,  u  e.  Cat  |->  { <. (
Base `  ndx ) ,  ( t  Func  u
) >. ,  <. (  Hom  `  ndx ) ,  ( t Nat  u )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( t 
Func  u )  X.  (
t  Func  u )
) ,  h  e.  ( t  Func  u
)  |->  [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( t Nat  u
) h ) ,  a  e.  ( f ( t Nat  u ) g )  |->  ( x  e.  ( Base `  t
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  u
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. } )
2 tpex 4535 . 2  |-  { <. (
Base `  ndx ) ,  ( t  Func  u
) >. ,  <. (  Hom  `  ndx ) ,  ( t Nat  u )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( t 
Func  u )  X.  (
t  Func  u )
) ,  h  e.  ( t  Func  u
)  |->  [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( t Nat  u
) h ) ,  a  e.  ( f ( t Nat  u ) g )  |->  ( x  e.  ( Base `  t
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  u
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. }  e.  _V
31, 2fnmpt2i 6209 1  |- FuncCat  Fn  ( Cat  X.  Cat )
Colors of variables: wff set class
Syntax hints:   [_csb 3094   {ctp 3655   <.cop 3656    e. cmpt 4093    X. cxp 4703    Fn wfn 5266   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137   ndxcnx 13161   Basecbs 13164    Hom chom 13235  compcco 13236   Catccat 13582    Func cfunc 13744   Nat cnat 13831   FuncCat cfuc 13832
This theorem is referenced by:  fucbas  13850  fuchom  13851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-fuc 13834
  Copyright terms: Public domain W3C validator