MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfuc Unicode version

Theorem fnfuc 14071
Description: The FuncCat operation is a well-defined function on categories. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
fnfuc  |- FuncCat  Fn  ( Cat  X.  Cat )

Proof of Theorem fnfuc
Dummy variables  a 
b  f  g  h  t  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fuc 14070 . 2  |- FuncCat  =  ( t  e.  Cat ,  u  e.  Cat  |->  { <. (
Base `  ndx ) ,  ( t  Func  u
) >. ,  <. (  Hom  `  ndx ) ,  ( t Nat  u )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( t 
Func  u )  X.  (
t  Func  u )
) ,  h  e.  ( t  Func  u
)  |->  [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( t Nat  u
) h ) ,  a  e.  ( f ( t Nat  u ) g )  |->  ( x  e.  ( Base `  t
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  u
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. } )
2 tpex 4650 . 2  |-  { <. (
Base `  ndx ) ,  ( t  Func  u
) >. ,  <. (  Hom  `  ndx ) ,  ( t Nat  u )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( t 
Func  u )  X.  (
t  Func  u )
) ,  h  e.  ( t  Func  u
)  |->  [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( t Nat  u
) h ) ,  a  e.  ( f ( t Nat  u ) g )  |->  ( x  e.  ( Base `  t
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  u
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. }  e.  _V
31, 2fnmpt2i 6361 1  |- FuncCat  Fn  ( Cat  X.  Cat )
Colors of variables: wff set class
Syntax hints:   [_csb 3196   {ctp 3761   <.cop 3762    e. cmpt 4209    X. cxp 4818    Fn wfn 5391   ` cfv 5396  (class class class)co 6022    e. cmpt2 6024   1stc1st 6288   2ndc2nd 6289   ndxcnx 13395   Basecbs 13398    Hom chom 13469  compcco 13470   Catccat 13818    Func cfunc 13980   Nat cnat 14067   FuncCat cfuc 14068
This theorem is referenced by:  fucbas  14086  fuchom  14087
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-fv 5404  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-fuc 14070
  Copyright terms: Public domain W3C validator