MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvrnss Structured version   Unicode version

Theorem fnfvrnss 5896
Description: An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
Assertion
Ref Expression
fnfvrnss  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fnfvrnss
StepHypRef Expression
1 ffnfv 5894 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
2 frn 5597 . 2  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2sylbir 205 1  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   A.wral 2705    C_ wss 3320   ran crn 4879    Fn wfn 5449   -->wf 5450   ` cfv 5454
This theorem is referenced by:  ffvresb  5900  dffi3  7436  infxpenlem  7895  alephsing  8156  mplind  16562  1stckgenlem  17585  psmetxrge0  18344  plyreres  20200  aannenlem1  20245  rmulccn  24314  esumfsup  24460  sxbrsigalem3  24622  sitgf  24660  dihf11lem  32064  hdmaprnN  32665  hgmaprnN  32702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462
  Copyright terms: Public domain W3C validator