Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniinfv Structured version   Unicode version

Theorem fniinfv 5777
 Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
fniinfv
Distinct variable groups:   ,   ,

Proof of Theorem fniinfv
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 5765 . . 3
21inteqd 4047 . 2
3 fvex 5734 . . 3
43dfiin2 4118 . 2
52, 4syl6reqr 2486 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652  cab 2421  wrex 2698  cint 4042  ciin 4086   crn 4871   wfn 5441  cfv 5446 This theorem is referenced by:  firest  13652  pnrmopn  17399  txtube  17664  bcth3  19276  imaiinfv  26731  diaintclN  31793  dibintclN  31902  dihintcl  32079 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
 Copyright terms: Public domain W3C validator