MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimadisj Unicode version

Theorem fnimadisj 5380
Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fnimadisj  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( F " C )  =  (/) )

Proof of Theorem fnimadisj
StepHypRef Expression
1 fndm 5359 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
21ineq1d 3382 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  i^i  C )  =  ( A  i^i  C ) )
32eqeq1d 2304 . . 3  |-  ( F  Fn  A  ->  (
( dom  F  i^i  C )  =  (/)  <->  ( A  i^i  C )  =  (/) ) )
43biimpar 471 . 2  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( dom  F  i^i  C )  =  (/) )
5 imadisj 5048 . 2  |-  ( ( F " C )  =  (/)  <->  ( dom  F  i^i  C )  =  (/) )
64, 5sylibr 203 1  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( F " C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    i^i cin 3164   (/)c0 3468   dom cdm 4705   "cima 4708    Fn wfn 5266
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-fn 5274
  Copyright terms: Public domain W3C validator