MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimadisj Unicode version

Theorem fnimadisj 5505
Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fnimadisj  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( F " C )  =  (/) )

Proof of Theorem fnimadisj
StepHypRef Expression
1 fndm 5484 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
21ineq1d 3484 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  i^i  C )  =  ( A  i^i  C ) )
32eqeq1d 2395 . . 3  |-  ( F  Fn  A  ->  (
( dom  F  i^i  C )  =  (/)  <->  ( A  i^i  C )  =  (/) ) )
43biimpar 472 . 2  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( dom  F  i^i  C )  =  (/) )
5 imadisj 5163 . 2  |-  ( ( F " C )  =  (/)  <->  ( dom  F  i^i  C )  =  (/) )
64, 5sylibr 204 1  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( F " C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    i^i cin 3262   (/)c0 3571   dom cdm 4818   "cima 4821    Fn wfn 5389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-br 4154  df-opab 4208  df-xp 4824  df-cnv 4826  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-fn 5397
  Copyright terms: Public domain W3C validator