MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimaeq0 Unicode version

Theorem fnimaeq0 5381
Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 27251. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 5048 . 2  |-  ( ( F " B )  =  (/)  <->  ( dom  F  i^i  B )  =  (/) )
2 incom 3374 . . . 4  |-  ( dom 
F  i^i  B )  =  ( B  i^i  dom 
F )
3 fndm 5359 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
43sseq2d 3219 . . . . . 6  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
54biimpar 471 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
6 df-ss 3179 . . . . 5  |-  ( B 
C_  dom  F  <->  ( B  i^i  dom  F )  =  B )
75, 6sylib 188 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( B  i^i  dom  F )  =  B )
82, 7syl5eq 2340 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( dom  F  i^i  B )  =  B )
98eqeq1d 2304 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( dom  F  i^i  B )  =  (/)  <->  B  =  (/) ) )
101, 9syl5bb 248 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    i^i cin 3164    C_ wss 3165   (/)c0 3468   dom cdm 4705   "cima 4708    Fn wfn 5266
This theorem is referenced by:  ipodrsima  14284  mdegldg  19468  ig1peu  19573  ig1pdvds  19578  kelac1  27264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-fn 5274
  Copyright terms: Public domain W3C validator