MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimapr Structured version   Unicode version

Theorem fnimapr 5779
Description: The image of a pair under a funtion. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
fnimapr  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( F " { B ,  C }
)  =  { ( F `  B ) ,  ( F `  C ) } )

Proof of Theorem fnimapr
StepHypRef Expression
1 fnsnfv 5778 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )
213adant3 977 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )
3 fnsnfv 5778 . . . . 5  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  { ( F `  C ) }  =  ( F " { C } ) )
433adant2 976 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  { ( F `  C ) }  =  ( F " { C } ) )
52, 4uneq12d 3494 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( { ( F `
 B ) }  u.  { ( F `
 C ) } )  =  ( ( F " { B } )  u.  ( F " { C }
) ) )
65eqcomd 2440 . 2  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( ( F " { B } )  u.  ( F " { C } ) )  =  ( { ( F `
 B ) }  u.  { ( F `
 C ) } ) )
7 df-pr 3813 . . . 4  |-  { B ,  C }  =  ( { B }  u.  { C } )
87imaeq2i 5193 . . 3  |-  ( F
" { B ,  C } )  =  ( F " ( { B }  u.  { C } ) )
9 imaundi 5276 . . 3  |-  ( F
" ( { B }  u.  { C } ) )  =  ( ( F " { B } )  u.  ( F " { C } ) )
108, 9eqtri 2455 . 2  |-  ( F
" { B ,  C } )  =  ( ( F " { B } )  u.  ( F " { C }
) )
11 df-pr 3813 . 2  |-  { ( F `  B ) ,  ( F `  C ) }  =  ( { ( F `  B ) }  u.  { ( F `  C
) } )
126, 10, 113eqtr4g 2492 1  |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A )  ->  ( F " { B ,  C }
)  =  { ( F `  B ) ,  ( F `  C ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725    u. cun 3310   {csn 3806   {cpr 3807   "cima 4873    Fn wfn 5441   ` cfv 5446
This theorem is referenced by:  injresinjlem  11191  mrcun  13839  2pthlem2  21588  constr3pthlem3  21636  imarnf1pr  28070  usgra2adedglem1  28271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
  Copyright terms: Public domain W3C validator