Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fninfp Unicode version

Theorem fninfp 26754
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fninfp  |-  ( F  Fn  A  ->  dom  ( F  i^i  _I  )  =  { x  e.  A  |  ( F `  x )  =  x } )
Distinct variable groups:    x, F    x, A

Proof of Theorem fninfp
StepHypRef Expression
1 inres 4973 . . . . . 6  |-  (  _I 
i^i  ( F  |`  A ) )  =  ( (  _I  i^i  F )  |`  A )
2 incom 3361 . . . . . . 7  |-  (  _I 
i^i  F )  =  ( F  i^i  _I  )
32reseq1i 4951 . . . . . 6  |-  ( (  _I  i^i  F )  |`  A )  =  ( ( F  i^i  _I  )  |`  A )
41, 3eqtri 2303 . . . . 5  |-  (  _I 
i^i  ( F  |`  A ) )  =  ( ( F  i^i  _I  )  |`  A )
5 incom 3361 . . . . 5  |-  ( ( F  |`  A )  i^i  _I  )  =  (  _I  i^i  ( F  |`  A ) )
6 inres 4973 . . . . 5  |-  ( F  i^i  (  _I  |`  A ) )  =  ( ( F  i^i  _I  )  |`  A )
74, 5, 63eqtr4i 2313 . . . 4  |-  ( ( F  |`  A )  i^i  _I  )  =  ( F  i^i  (  _I  |`  A ) )
8 fnresdm 5353 . . . . 5  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
98ineq1d 3369 . . . 4  |-  ( F  Fn  A  ->  (
( F  |`  A )  i^i  _I  )  =  ( F  i^i  _I  ) )
107, 9syl5reqr 2330 . . 3  |-  ( F  Fn  A  ->  ( F  i^i  _I  )  =  ( F  i^i  (  _I  |`  A ) ) )
1110dmeqd 4881 . 2  |-  ( F  Fn  A  ->  dom  ( F  i^i  _I  )  =  dom  ( F  i^i  (  _I  |`  A ) ) )
12 fnresi 5361 . . 3  |-  (  _I  |`  A )  Fn  A
13 fndmin 5632 . . 3  |-  ( ( F  Fn  A  /\  (  _I  |`  A )  Fn  A )  ->  dom  ( F  i^i  (  _I  |`  A ) )  =  { x  e.  A  |  ( F `
 x )  =  ( (  _I  |`  A ) `
 x ) } )
1412, 13mpan2 652 . 2  |-  ( F  Fn  A  ->  dom  ( F  i^i  (  _I  |`  A ) )  =  { x  e.  A  |  ( F `
 x )  =  ( (  _I  |`  A ) `
 x ) } )
15 fvresi 5711 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
1615eqeq2d 2294 . . . 4  |-  ( x  e.  A  ->  (
( F `  x
)  =  ( (  _I  |`  A ) `  x )  <->  ( F `  x )  =  x ) )
1716rabbiia 2778 . . 3  |-  { x  e.  A  |  ( F `  x )  =  ( (  _I  |`  A ) `  x
) }  =  {
x  e.  A  | 
( F `  x
)  =  x }
1817a1i 10 . 2  |-  ( F  Fn  A  ->  { x  e.  A  |  ( F `  x )  =  ( (  _I  |`  A ) `  x
) }  =  {
x  e.  A  | 
( F `  x
)  =  x }
)
1911, 14, 183eqtrd 2319 1  |-  ( F  Fn  A  ->  dom  ( F  i^i  _I  )  =  { x  e.  A  |  ( F `  x )  =  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {crab 2547    i^i cin 3151    _I cid 4304   dom cdm 4689    |` cres 4691    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  fnelfp  26755
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263
  Copyright terms: Public domain W3C validator