MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniniseg2 Unicode version

Theorem fniniseg2 5793
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fniniseg2  |-  ( F  Fn  A  ->  ( `' F " { B } )  =  {
x  e.  A  | 
( F `  x
)  =  B }
)
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem fniniseg2
StepHypRef Expression
1 fncnvima2 5792 . 2  |-  ( F  Fn  A  ->  ( `' F " { B } )  =  {
x  e.  A  | 
( F `  x
)  e.  { B } } )
2 fvex 5683 . . . . 5  |-  ( F `
 x )  e. 
_V
32elsnc 3781 . . . 4  |-  ( ( F `  x )  e.  { B }  <->  ( F `  x )  =  B )
43a1i 11 . . 3  |-  ( x  e.  A  ->  (
( F `  x
)  e.  { B } 
<->  ( F `  x
)  =  B ) )
54rabbiia 2890 . 2  |-  { x  e.  A  |  ( F `  x )  e.  { B } }  =  { x  e.  A  |  ( F `  x )  =  B }
61, 5syl6eq 2436 1  |-  ( F  Fn  A  ->  ( `' F " { B } )  =  {
x  e.  A  | 
( F `  x
)  =  B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717   {crab 2654   {csn 3758   `'ccnv 4818   "cima 4822    Fn wfn 5390   ` cfv 5395
This theorem is referenced by:  idomrootle  27181  proot1hash  27189
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-fv 5403
  Copyright terms: Public domain W3C validator