MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmap Structured version   Unicode version

Theorem fnmap 7027
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnmap  |-  ^m  Fn  ( _V  X.  _V )

Proof of Theorem fnmap
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 7022 . 2  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
2 vex 2961 . . 3  |-  y  e. 
_V
3 vex 2961 . . 3  |-  x  e. 
_V
4 mapex 7026 . . 3  |-  ( ( y  e.  _V  /\  x  e.  _V )  ->  { f  |  f : y --> x }  e.  _V )
52, 3, 4mp2an 655 . 2  |-  { f  |  f : y --> x }  e.  _V
61, 5fnmpt2i 6422 1  |-  ^m  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 1726   {cab 2424   _Vcvv 2958    X. cxp 4878    Fn wfn 5451   -->wf 5452    ^m cmap 7020
This theorem is referenced by:  elmapex  7039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-map 7022
  Copyright terms: Public domain W3C validator