Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnnfpeq0 Structured version   Unicode version

Theorem fnnfpeq0 26720
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Assertion
Ref Expression
fnnfpeq0  |-  ( F  Fn  A  ->  ( dom  ( F  \  _I  )  =  (/)  <->  F  =  (  _I  |`  A ) ) )

Proof of Theorem fnnfpeq0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rabeq0 3641 . . 3  |-  ( { x  e.  A  | 
( F `  x
)  =/=  x }  =  (/)  <->  A. x  e.  A  -.  ( F `  x
)  =/=  x )
2 fvresi 5916 . . . . . . 7  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
32eqeq2d 2446 . . . . . 6  |-  ( x  e.  A  ->  (
( F `  x
)  =  ( (  _I  |`  A ) `  x )  <->  ( F `  x )  =  x ) )
43adantl 453 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  ( (  _I  |`  A ) `
 x )  <->  ( F `  x )  =  x ) )
5 nne 2602 . . . . 5  |-  ( -.  ( F `  x
)  =/=  x  <->  ( F `  x )  =  x )
64, 5syl6rbbr 256 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( -.  ( F `
 x )  =/=  x  <->  ( F `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
76ralbidva 2713 . . 3  |-  ( F  Fn  A  ->  ( A. x  e.  A  -.  ( F `  x
)  =/=  x  <->  A. x  e.  A  ( F `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
81, 7syl5bb 249 . 2  |-  ( F  Fn  A  ->  ( { x  e.  A  |  ( F `  x )  =/=  x }  =  (/)  <->  A. x  e.  A  ( F `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
9 fndifnfp 26718 . . 3  |-  ( F  Fn  A  ->  dom  ( F  \  _I  )  =  { x  e.  A  |  ( F `  x )  =/=  x } )
109eqeq1d 2443 . 2  |-  ( F  Fn  A  ->  ( dom  ( F  \  _I  )  =  (/)  <->  { x  e.  A  |  ( F `  x )  =/=  x }  =  (/) ) )
11 fnresi 5554 . . 3  |-  (  _I  |`  A )  Fn  A
12 eqfnfv 5819 . . 3  |-  ( ( F  Fn  A  /\  (  _I  |`  A )  Fn  A )  -> 
( F  =  (  _I  |`  A )  <->  A. x  e.  A  ( F `  x )  =  ( (  _I  |`  A ) `  x
) ) )
1311, 12mpan2 653 . 2  |-  ( F  Fn  A  ->  ( F  =  (  _I  |`  A )  <->  A. x  e.  A  ( F `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
148, 10, 133bitr4d 277 1  |-  ( F  Fn  A  ->  ( dom  ( F  \  _I  )  =  (/)  <->  F  =  (  _I  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   {crab 2701    \ cdif 3309   (/)c0 3620    _I cid 4485   dom cdm 4870    |` cres 4872    Fn wfn 5441   ` cfv 5446
This theorem is referenced by:  symggen  27369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454
  Copyright terms: Public domain W3C validator