Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnopabeqd Structured version   Unicode version

Theorem fnopabeqd 26423
 Description: Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
fnopabeqd.1
Assertion
Ref Expression
fnopabeqd
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem fnopabeqd
StepHypRef Expression
1 fnopabeqd.1 . . . 4
21eqeq2d 2449 . . 3
32anbi2d 686 . 2
43opabbidv 4273 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  copab 4267 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-opab 4269
 Copyright terms: Public domain W3C validator