MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnoprabg Structured version   Unicode version

Theorem fnoprabg 6171
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
fnoprabg  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
Distinct variable groups:    x, y,
z    ph, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z)

Proof of Theorem fnoprabg
StepHypRef Expression
1 eumo 2321 . . . . . 6  |-  ( E! z ps  ->  E* z ps )
21imim2i 14 . . . . 5  |-  ( (
ph  ->  E! z ps )  ->  ( ph  ->  E* z ps )
)
3 moanimv 2339 . . . . 5  |-  ( E* z ( ph  /\  ps )  <->  ( ph  ->  E* z ps ) )
42, 3sylibr 204 . . . 4  |-  ( (
ph  ->  E! z ps )  ->  E* z
( ph  /\  ps )
)
542alimi 1569 . . 3  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  A. x A. y E* z ( ph  /\  ps ) )
6 funoprabg 6169 . . 3  |-  ( A. x A. y E* z
( ph  /\  ps )  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( ph  /\ 
ps ) } )
75, 6syl 16 . 2  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( ph  /\ 
ps ) } )
8 dmoprab 6154 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  =  { <. x ,  y >.  |  E. z ( ph  /\ 
ps ) }
9 nfa1 1806 . . . 4  |-  F/ x A. x A. y (
ph  ->  E! z ps )
10 nfa2 1874 . . . 4  |-  F/ y A. x A. y
( ph  ->  E! z ps )
11 simpl 444 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ph )
1211exlimiv 1644 . . . . . . 7  |-  ( E. z ( ph  /\  ps )  ->  ph )
13 euex 2304 . . . . . . . . . 10  |-  ( E! z ps  ->  E. z ps )
1413imim2i 14 . . . . . . . . 9  |-  ( (
ph  ->  E! z ps )  ->  ( ph  ->  E. z ps )
)
1514ancld 537 . . . . . . . 8  |-  ( (
ph  ->  E! z ps )  ->  ( ph  ->  ( ph  /\  E. z ps ) ) )
16 19.42v 1928 . . . . . . . 8  |-  ( E. z ( ph  /\  ps )  <->  ( ph  /\  E. z ps ) )
1715, 16syl6ibr 219 . . . . . . 7  |-  ( (
ph  ->  E! z ps )  ->  ( ph  ->  E. z ( ph  /\ 
ps ) ) )
1812, 17impbid2 196 . . . . . 6  |-  ( (
ph  ->  E! z ps )  ->  ( E. z ( ph  /\  ps )  <->  ph ) )
1918sps 1770 . . . . 5  |-  ( A. y ( ph  ->  E! z ps )  -> 
( E. z (
ph  /\  ps )  <->  ph ) )
2019sps 1770 . . . 4  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  ( E. z (
ph  /\  ps )  <->  ph ) )
219, 10, 20opabbid 4270 . . 3  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. x ,  y
>.  |  E. z
( ph  /\  ps ) }  =  { <. x ,  y >.  |  ph } )
228, 21syl5eq 2480 . 2  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( ph  /\ 
ps ) }  =  { <. x ,  y
>.  |  ph } )
23 df-fn 5457 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } 
<->  ( Fun  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  /\  dom  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  =  { <. x ,  y >.  |  ph } ) )
247, 22, 23sylanbrc 646 1  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652   E!weu 2281   E*wmo 2282   {copab 4265   dom cdm 4878   Fun wfun 5448    Fn wfn 5449   {coprab 6082
This theorem is referenced by:  fnoprab  6173  ovg  6212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-fun 5456  df-fn 5457  df-oprab 6085
  Copyright terms: Public domain W3C validator