MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnovrn Structured version   Unicode version

Theorem fnovrn 6223
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
fnovrn  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( C F D )  e.  ran  F
)

Proof of Theorem fnovrn
StepHypRef Expression
1 opelxpi 4912 . . 3  |-  ( ( C  e.  A  /\  D  e.  B )  -> 
<. C ,  D >.  e.  ( A  X.  B
) )
2 df-ov 6086 . . . 4  |-  ( C F D )  =  ( F `  <. C ,  D >. )
3 fnfvelrn 5869 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  <. C ,  D >.  e.  ( A  X.  B
) )  ->  ( F `  <. C ,  D >. )  e.  ran  F )
42, 3syl5eqel 2522 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  <. C ,  D >.  e.  ( A  X.  B
) )  ->  ( C F D )  e. 
ran  F )
51, 4sylan2 462 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  ( C  e.  A  /\  D  e.  B
) )  ->  ( C F D )  e. 
ran  F )
653impb 1150 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( C F D )  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    e. wcel 1726   <.cop 3819    X. cxp 4878   ran crn 4881    Fn wfn 5451   ` cfv 5456  (class class class)co 6083
This theorem is referenced by:  unirnioo  11006  ioorebas  11008  yonffthlem  14381  gsumval2a  14784  efginvrel2  15361  efgredleme  15377  efgcpbllemb  15389  mplsubrglem  16504  lecldbas  17285  blelrnps  18448  blelrn  18449  blssioo  18828  tgioo  18829  opnmbllem  19495  mbfdm  19522  mbfima  19526  isgrpo2  21787  tpr2rico  24312  dya2icoseg  24629  opnmbllem0  26244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-iota 5420  df-fun 5458  df-fn 5459  df-fv 5464  df-ov 6086
  Copyright terms: Public domain W3C validator