MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5342
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5341 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5272 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 15 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4694   Fun wfun 5249    Fn wfn 5250
This theorem is referenced by:  fnbr  5346  fnresdm  5353  fn0  5363  frel  5392  fcoi2  5416  f1rel  5440  f1ocnv  5485  dffn5  5568  fnsnfv  5582  fconst5  5731  fnex  5741  fnexALT  5742  tz7.48-2  6454  zorn2lem4  8126  imasvscafn  13439  2oppchomf  13627  feqmptdf  23228  indf1ofs  23609  dfafn5a  28022  bnj66  28892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fun 5257  df-fn 5258
  Copyright terms: Public domain W3C validator