MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Unicode version

Theorem fnrel 5535
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5534 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5463 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 16 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4875   Fun wfun 5440    Fn wfn 5441
This theorem is referenced by:  fnbr  5539  fnresdm  5546  fn0  5556  frel  5586  fcoi2  5610  f1rel  5634  f1ocnv  5679  dffn5  5764  fnsnfv  5778  fconst5  5941  fnex  5953  fnexALT  5954  tz7.48-2  6691  zorn2lem4  8371  imasvscafn  13754  2oppchomf  13942  feqmptdf  24067  dfafn5a  27991  resfnfinfin  28071  bnj66  29168
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-fun 5448  df-fn 5449
  Copyright terms: Public domain W3C validator