MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5358
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5357 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5288 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 15 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4710   Fun wfun 5265    Fn wfn 5266
This theorem is referenced by:  fnbr  5362  fnresdm  5369  fn0  5379  frel  5408  fcoi2  5432  f1rel  5456  f1ocnv  5501  dffn5  5584  fnsnfv  5598  fconst5  5747  fnex  5757  fnexALT  5758  tz7.48-2  6470  zorn2lem4  8142  imasvscafn  13455  2oppchomf  13643  feqmptdf  23243  indf1ofs  23624  dfafn5a  28128  bnj66  29208
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fun 5273  df-fn 5274
  Copyright terms: Public domain W3C validator