MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnres Unicode version

Theorem fnres 5376
Description: An equivalence for functionality of a restriction. Compare dffun8 5297. (Contributed by Mario Carneiro, 20-May-2015.)
Assertion
Ref Expression
fnres  |-  ( ( F  |`  A )  Fn  A  <->  A. x  e.  A  E! y  x F
y )
Distinct variable groups:    x, y, A    x, F, y

Proof of Theorem fnres
StepHypRef Expression
1 ancom 437 . . 3  |-  ( ( A. x  e.  A  E* y  x F
y  /\  A. x  e.  A  E. y  x F y )  <->  ( A. x  e.  A  E. y  x F y  /\  A. x  e.  A  E* y  x F y ) )
2 vex 2804 . . . . . . . . . 10  |-  y  e. 
_V
32brres 4977 . . . . . . . . 9  |-  ( x ( F  |`  A ) y  <->  ( x F y  /\  x  e.  A ) )
4 ancom 437 . . . . . . . . 9  |-  ( ( x F y  /\  x  e.  A )  <->  ( x  e.  A  /\  x F y ) )
53, 4bitri 240 . . . . . . . 8  |-  ( x ( F  |`  A ) y  <->  ( x  e.  A  /\  x F y ) )
65mobii 2192 . . . . . . 7  |-  ( E* y  x ( F  |`  A ) y  <->  E* y
( x  e.  A  /\  x F y ) )
7 moanimv 2214 . . . . . . 7  |-  ( E* y ( x  e.  A  /\  x F y )  <->  ( x  e.  A  ->  E* y  x F y ) )
86, 7bitri 240 . . . . . 6  |-  ( E* y  x ( F  |`  A ) y  <->  ( x  e.  A  ->  E* y  x F y ) )
98albii 1556 . . . . 5  |-  ( A. x E* y  x ( F  |`  A )
y  <->  A. x ( x  e.  A  ->  E* y  x F y ) )
10 relres 4999 . . . . . 6  |-  Rel  ( F  |`  A )
11 dffun6 5286 . . . . . 6  |-  ( Fun  ( F  |`  A )  <-> 
( Rel  ( F  |`  A )  /\  A. x E* y  x ( F  |`  A )
y ) )
1210, 11mpbiran 884 . . . . 5  |-  ( Fun  ( F  |`  A )  <->  A. x E* y  x ( F  |`  A ) y )
13 df-ral 2561 . . . . 5  |-  ( A. x  e.  A  E* y  x F y  <->  A. x
( x  e.  A  ->  E* y  x F y ) )
149, 12, 133bitr4i 268 . . . 4  |-  ( Fun  ( F  |`  A )  <->  A. x  e.  A  E* y  x F
y )
15 dmres 4992 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
16 inss1 3402 . . . . . . 7  |-  ( A  i^i  dom  F )  C_  A
1715, 16eqsstri 3221 . . . . . 6  |-  dom  ( F  |`  A )  C_  A
18 eqss 3207 . . . . . 6  |-  ( dom  ( F  |`  A )  =  A  <->  ( dom  ( F  |`  A ) 
C_  A  /\  A  C_ 
dom  ( F  |`  A ) ) )
1917, 18mpbiran 884 . . . . 5  |-  ( dom  ( F  |`  A )  =  A  <->  A  C_  dom  ( F  |`  A ) )
20 dfss3 3183 . . . . . 6  |-  ( A 
C_  dom  ( F  |`  A )  <->  A. x  e.  A  x  e.  dom  ( F  |`  A ) )
2115elin2 3372 . . . . . . . . 9  |-  ( x  e.  dom  ( F  |`  A )  <->  ( x  e.  A  /\  x  e.  dom  F ) )
2221baib 871 . . . . . . . 8  |-  ( x  e.  A  ->  (
x  e.  dom  ( F  |`  A )  <->  x  e.  dom  F ) )
23 vex 2804 . . . . . . . . 9  |-  x  e. 
_V
2423eldm 4892 . . . . . . . 8  |-  ( x  e.  dom  F  <->  E. y  x F y )
2522, 24syl6bb 252 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  dom  ( F  |`  A )  <->  E. y  x F y ) )
2625ralbiia 2588 . . . . . 6  |-  ( A. x  e.  A  x  e.  dom  ( F  |`  A )  <->  A. x  e.  A  E. y  x F y )
2720, 26bitri 240 . . . . 5  |-  ( A 
C_  dom  ( F  |`  A )  <->  A. x  e.  A  E. y  x F y )
2819, 27bitri 240 . . . 4  |-  ( dom  ( F  |`  A )  =  A  <->  A. x  e.  A  E. y  x F y )
2914, 28anbi12i 678 . . 3  |-  ( ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A )  <->  ( A. x  e.  A  E* y  x F y  /\  A. x  e.  A  E. y  x F y ) )
30 r19.26 2688 . . 3  |-  ( A. x  e.  A  ( E. y  x F
y  /\  E* y  x F y )  <->  ( A. x  e.  A  E. y  x F y  /\  A. x  e.  A  E* y  x F y ) )
311, 29, 303bitr4i 268 . 2  |-  ( ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A )  <->  A. x  e.  A  ( E. y  x F y  /\  E* y  x F
y ) )
32 df-fn 5274 . 2  |-  ( ( F  |`  A )  Fn  A  <->  ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A ) )
33 eu5 2194 . . 3  |-  ( E! y  x F y  <-> 
( E. y  x F y  /\  E* y  x F y ) )
3433ralbii 2580 . 2  |-  ( A. x  e.  A  E! y  x F y  <->  A. x  e.  A  ( E. y  x F y  /\  E* y  x F
y ) )
3531, 32, 343bitr4i 268 1  |-  ( ( F  |`  A )  Fn  A  <->  A. x  e.  A  E! y  x F
y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   E!weu 2156   E*wmo 2157   A.wral 2556    i^i cin 3164    C_ wss 3165   class class class wbr 4039   dom cdm 4705    |` cres 4707   Rel wrel 4710   Fun wfun 5265    Fn wfn 5266
This theorem is referenced by:  f1ompt  5698  omxpenlem  6979  tz6.12-afv  28141
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-fun 5273  df-fn 5274
  Copyright terms: Public domain W3C validator