Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresfnco Unicode version

Theorem fnresfnco 27989
Description: Composition of two functions, similar to fnco 5352. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
fnresfnco  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  ( F  o.  G )  Fn  B
)

Proof of Theorem fnresfnco
StepHypRef Expression
1 fnfun 5341 . . 3  |-  ( ( F  |`  ran  G )  Fn  ran  G  ->  Fun  ( F  |`  ran  G
) )
2 fnfun 5341 . . 3  |-  ( G  Fn  B  ->  Fun  G )
3 funresfunco 27988 . . 3  |-  ( ( Fun  ( F  |`  ran  G )  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
41, 2, 3syl2an 463 . 2  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  Fun  ( F  o.  G ) )
5 fndm 5343 . . . . . 6  |-  ( ( F  |`  ran  G )  Fn  ran  G  ->  dom  ( F  |`  ran  G
)  =  ran  G
)
6 dmres 4976 . . . . . . . 8  |-  dom  ( F  |`  ran  G )  =  ( ran  G  i^i  dom  F )
76eqeq1i 2290 . . . . . . 7  |-  ( dom  ( F  |`  ran  G
)  =  ran  G  <->  ( ran  G  i^i  dom  F )  =  ran  G
)
8 df-ss 3166 . . . . . . . 8  |-  ( ran 
G  C_  dom  F  <->  ( ran  G  i^i  dom  F )  =  ran  G )
98biimpri 197 . . . . . . 7  |-  ( ( ran  G  i^i  dom  F )  =  ran  G  ->  ran  G  C_  dom  F )
107, 9sylbi 187 . . . . . 6  |-  ( dom  ( F  |`  ran  G
)  =  ran  G  ->  ran  G  C_  dom  F )
115, 10syl 15 . . . . 5  |-  ( ( F  |`  ran  G )  Fn  ran  G  ->  ran  G  C_  dom  F )
1211adantr 451 . . . 4  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  ran  G  C_  dom  F )
13 dmcosseq 4946 . . . 4  |-  ( ran 
G  C_  dom  F  ->  dom  ( F  o.  G
)  =  dom  G
)
1412, 13syl 15 . . 3  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  dom  ( F  o.  G )  =  dom  G )
15 fndm 5343 . . . 4  |-  ( G  Fn  B  ->  dom  G  =  B )
1615adantl 452 . . 3  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  dom  G  =  B )
1714, 16eqtrd 2315 . 2  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  dom  ( F  o.  G )  =  B )
18 df-fn 5258 . 2  |-  ( ( F  o.  G )  Fn  B  <->  ( Fun  ( F  o.  G
)  /\  dom  ( F  o.  G )  =  B ) )
194, 17, 18sylanbrc 645 1  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  ( F  o.  G )  Fn  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    i^i cin 3151    C_ wss 3152   dom cdm 4689   ran crn 4690    |` cres 4691    o. ccom 4693   Fun wfun 5249    Fn wfn 5250
This theorem is referenced by:  funcoressn  27990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-fun 5257  df-fn 5258
  Copyright terms: Public domain W3C validator