MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresin1 Unicode version

Theorem fnresin1 5374
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin1  |-  ( F  Fn  A  ->  ( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )

Proof of Theorem fnresin1
StepHypRef Expression
1 inss1 3402 . 2  |-  ( A  i^i  B )  C_  A
2 fnssres 5373 . 2  |-  ( ( F  Fn  A  /\  ( A  i^i  B ) 
C_  A )  -> 
( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )
31, 2mpan2 652 1  |-  ( F  Fn  A  ->  ( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3164    C_ wss 3165    |` cres 4707    Fn wfn 5266
This theorem is referenced by:  tfrlem5  6412  wfrlem4  24330  frrlem4  24355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-fun 5273  df-fn 5274
  Copyright terms: Public domain W3C validator