MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresin2 Unicode version

Theorem fnresin2 5359
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin2  |-  ( F  Fn  A  ->  ( F  |`  ( B  i^i  A ) )  Fn  ( B  i^i  A ) )

Proof of Theorem fnresin2
StepHypRef Expression
1 inss2 3390 . 2  |-  ( B  i^i  A )  C_  A
2 fnssres 5357 . 2  |-  ( ( F  Fn  A  /\  ( B  i^i  A ) 
C_  A )  -> 
( F  |`  ( B  i^i  A ) )  Fn  ( B  i^i  A ) )
31, 2mpan2 652 1  |-  ( F  Fn  A  ->  ( F  |`  ( B  i^i  A ) )  Fn  ( B  i^i  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3151    C_ wss 3152    |` cres 4691    Fn wfn 5250
This theorem is referenced by:  tfrlem5  6396  hashresfn  23173
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-fun 5257  df-fn 5258
  Copyright terms: Public domain W3C validator