MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnse Unicode version

Theorem fnse 6232
Description: Condition for the well-order in fnwe 6231 to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
fnse.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  A )  /\  ( ( F `  x ) R ( F `  y )  \/  ( ( F `
 x )  =  ( F `  y
)  /\  x S
y ) ) ) }
fnse.2  |-  ( ph  ->  F : A --> B )
fnse.3  |-  ( ph  ->  R Se  B )
fnse.4  |-  ( ph  ->  ( `' F "
w )  e.  _V )
Assertion
Ref Expression
fnse  |-  ( ph  ->  T Se  A )
Distinct variable groups:    x, y, A    w, B    x, w, y, F    ph, w    w, R, x, y    x, S, y    w, T
Allowed substitution hints:    ph( x, y)    A( w)    B( x, y)    S( w)    T( x, y)

Proof of Theorem fnse
Dummy variables  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3390 . . . . . 6  |-  ( A  i^i  ( `' T " { z } ) )  C_  ( `' T " { z } )
2 vex 2791 . . . . . . . . 9  |-  z  e. 
_V
3 vex 2791 . . . . . . . . . 10  |-  w  e. 
_V
43eliniseg 5042 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
w  e.  ( `' T " { z } )  <->  w T
z ) )
52, 4ax-mp 8 . . . . . . . 8  |-  ( w  e.  ( `' T " { z } )  <-> 
w T z )
6 fveq2 5525 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
7 fveq2 5525 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
86, 7breqan12d 4038 . . . . . . . . . . 11  |-  ( ( x  =  w  /\  y  =  z )  ->  ( ( F `  x ) R ( F `  y )  <-> 
( F `  w
) R ( F `
 z ) ) )
96, 7eqeqan12d 2298 . . . . . . . . . . . 12  |-  ( ( x  =  w  /\  y  =  z )  ->  ( ( F `  x )  =  ( F `  y )  <-> 
( F `  w
)  =  ( F `
 z ) ) )
10 breq12 4028 . . . . . . . . . . . 12  |-  ( ( x  =  w  /\  y  =  z )  ->  ( x S y  <-> 
w S z ) )
119, 10anbi12d 691 . . . . . . . . . . 11  |-  ( ( x  =  w  /\  y  =  z )  ->  ( ( ( F `
 x )  =  ( F `  y
)  /\  x S
y )  <->  ( ( F `  w )  =  ( F `  z )  /\  w S z ) ) )
128, 11orbi12d 690 . . . . . . . . . 10  |-  ( ( x  =  w  /\  y  =  z )  ->  ( ( ( F `
 x ) R ( F `  y
)  \/  ( ( F `  x )  =  ( F `  y )  /\  x S y ) )  <-> 
( ( F `  w ) R ( F `  z )  \/  ( ( F `
 w )  =  ( F `  z
)  /\  w S
z ) ) ) )
13 fnse.1 . . . . . . . . . 10  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  A  /\  y  e.  A )  /\  ( ( F `  x ) R ( F `  y )  \/  ( ( F `
 x )  =  ( F `  y
)  /\  x S
y ) ) ) }
1412, 13brab2ga 4763 . . . . . . . . 9  |-  ( w T z  <->  ( (
w  e.  A  /\  z  e.  A )  /\  ( ( F `  w ) R ( F `  z )  \/  ( ( F `
 w )  =  ( F `  z
)  /\  w S
z ) ) ) )
15 fnse.2 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : A --> B )
16 ffvelrn 5663 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : A --> B  /\  w  e.  A )  ->  ( F `  w
)  e.  B )
1715, 16sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  B )
1817adantrr 697 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( F `  w
)  e.  B )
19 breq1 4026 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( F `  w )  ->  (
u R ( F `
 z )  <->  ( F `  w ) R ( F `  z ) ) )
2019elrab3 2924 . . . . . . . . . . . . . . . 16  |-  ( ( F `  w )  e.  B  ->  (
( F `  w
)  e.  { u  e.  B  |  u R ( F `  z ) }  <->  ( F `  w ) R ( F `  z ) ) )
2118, 20syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( ( F `  w )  e.  {
u  e.  B  |  u R ( F `  z ) }  <->  ( F `  w ) R ( F `  z ) ) )
2221biimprd 214 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( ( F `  w ) R ( F `  z )  ->  ( F `  w )  e.  {
u  e.  B  |  u R ( F `  z ) } ) )
23 simpl 443 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  w
)  =  ( F `
 z )  /\  w S z )  -> 
( F `  w
)  =  ( F `
 z ) )
24 fvex 5539 . . . . . . . . . . . . . . . . 17  |-  ( F `
 w )  e. 
_V
2524elsnc 3663 . . . . . . . . . . . . . . . 16  |-  ( ( F `  w )  e.  { ( F `
 z ) }  <-> 
( F `  w
)  =  ( F `
 z ) )
2623, 25sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  w
)  =  ( F `
 z )  /\  w S z )  -> 
( F `  w
)  e.  { ( F `  z ) } )
2726a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( ( ( F `
 w )  =  ( F `  z
)  /\  w S
z )  ->  ( F `  w )  e.  { ( F `  z ) } ) )
2822, 27orim12d 811 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( ( ( F `
 w ) R ( F `  z
)  \/  ( ( F `  w )  =  ( F `  z )  /\  w S z ) )  ->  ( ( F `
 w )  e. 
{ u  e.  B  |  u R ( F `
 z ) }  \/  ( F `  w )  e.  {
( F `  z
) } ) ) )
29 elun 3316 . . . . . . . . . . . . 13  |-  ( ( F `  w )  e.  ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } )  <->  ( ( F `  w )  e.  { u  e.  B  |  u R ( F `
 z ) }  \/  ( F `  w )  e.  {
( F `  z
) } ) )
3028, 29syl6ibr 218 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( ( ( F `
 w ) R ( F `  z
)  \/  ( ( F `  w )  =  ( F `  z )  /\  w S z ) )  ->  ( F `  w )  e.  ( { u  e.  B  |  u R ( F `
 z ) }  u.  { ( F `
 z ) } ) ) )
31 simprl 732 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  ->  w  e.  A )
3230, 31jctild 527 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( ( ( F `
 w ) R ( F `  z
)  \/  ( ( F `  w )  =  ( F `  z )  /\  w S z ) )  ->  ( w  e.  A  /\  ( F `
 w )  e.  ( { u  e.  B  |  u R ( F `  z
) }  u.  {
( F `  z
) } ) ) ) )
33 ffn 5389 . . . . . . . . . . . . . 14  |-  ( F : A --> B  ->  F  Fn  A )
3415, 33syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  A )
3534adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  ->  F  Fn  A )
36 elpreima 5645 . . . . . . . . . . . 12  |-  ( F  Fn  A  ->  (
w  e.  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) )  <-> 
( w  e.  A  /\  ( F `  w
)  e.  ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) ) ) )
3735, 36syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( w  e.  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) )  <-> 
( w  e.  A  /\  ( F `  w
)  e.  ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) ) ) )
3832, 37sylibrd 225 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  A  /\  z  e.  A ) )  -> 
( ( ( F `
 w ) R ( F `  z
)  \/  ( ( F `  w )  =  ( F `  z )  /\  w S z ) )  ->  w  e.  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) ) ) )
3938expimpd 586 . . . . . . . . 9  |-  ( ph  ->  ( ( ( w  e.  A  /\  z  e.  A )  /\  (
( F `  w
) R ( F `
 z )  \/  ( ( F `  w )  =  ( F `  z )  /\  w S z ) ) )  ->  w  e.  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) ) ) )
4014, 39syl5bi 208 . . . . . . . 8  |-  ( ph  ->  ( w T z  ->  w  e.  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) ) ) )
415, 40syl5bi 208 . . . . . . 7  |-  ( ph  ->  ( w  e.  ( `' T " { z } )  ->  w  e.  ( `' F "
( { u  e.  B  |  u R ( F `  z
) }  u.  {
( F `  z
) } ) ) ) )
4241ssrdv 3185 . . . . . 6  |-  ( ph  ->  ( `' T " { z } ) 
C_  ( `' F " ( { u  e.  B  |  u R ( F `  z
) }  u.  {
( F `  z
) } ) ) )
431, 42syl5ss 3190 . . . . 5  |-  ( ph  ->  ( A  i^i  ( `' T " { z } ) )  C_  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) ) )
4443adantr 451 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( A  i^i  ( `' T " { z } ) )  C_  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) ) )
45 ffvelrn 5663 . . . . . . . 8  |-  ( ( F : A --> B  /\  z  e.  A )  ->  ( F `  z
)  e.  B )
4615, 45sylan 457 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  B )
47 fnse.3 . . . . . . . 8  |-  ( ph  ->  R Se  B )
48 seex 4356 . . . . . . . 8  |-  ( ( R Se  B  /\  ( F `  z )  e.  B )  ->  { u  e.  B  |  u R ( F `  z ) }  e.  _V )
4947, 48sylan 457 . . . . . . 7  |-  ( (
ph  /\  ( F `  z )  e.  B
)  ->  { u  e.  B  |  u R ( F `  z ) }  e.  _V )
5046, 49syldan 456 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  { u  e.  B  |  u R ( F `  z ) }  e.  _V )
51 snex 4216 . . . . . 6  |-  { ( F `  z ) }  e.  _V
52 unexg 4521 . . . . . 6  |-  ( ( { u  e.  B  |  u R ( F `
 z ) }  e.  _V  /\  {
( F `  z
) }  e.  _V )  ->  ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } )  e. 
_V )
5350, 51, 52sylancl 643 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  ( { u  e.  B  |  u R ( F `
 z ) }  u.  { ( F `
 z ) } )  e.  _V )
54 imaeq2 5008 . . . . . . . . 9  |-  ( w  =  ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } )  -> 
( `' F "
w )  =  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) ) )
5554eleq1d 2349 . . . . . . . 8  |-  ( w  =  ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } )  -> 
( ( `' F " w )  e.  _V  <->  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) )  e.  _V ) )
5655imbi2d 307 . . . . . . 7  |-  ( w  =  ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } )  -> 
( ( ph  ->  ( `' F " w )  e.  _V )  <->  ( ph  ->  ( `' F "
( { u  e.  B  |  u R ( F `  z
) }  u.  {
( F `  z
) } ) )  e.  _V ) ) )
57 fnse.4 . . . . . . 7  |-  ( ph  ->  ( `' F "
w )  e.  _V )
5856, 57vtoclg 2843 . . . . . 6  |-  ( ( { u  e.  B  |  u R ( F `
 z ) }  u.  { ( F `
 z ) } )  e.  _V  ->  (
ph  ->  ( `' F " ( { u  e.  B  |  u R ( F `  z
) }  u.  {
( F `  z
) } ) )  e.  _V ) )
5958impcom 419 . . . . 5  |-  ( (
ph  /\  ( {
u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } )  e. 
_V )  ->  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) )  e.  _V )
6053, 59syldan 456 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) )  e.  _V )
61 ssexg 4160 . . . 4  |-  ( ( ( A  i^i  ( `' T " { z } ) )  C_  ( `' F " ( { u  e.  B  |  u R ( F `  z ) }  u.  { ( F `  z
) } ) )  /\  ( `' F " ( { u  e.  B  |  u R ( F `  z
) }  u.  {
( F `  z
) } ) )  e.  _V )  -> 
( A  i^i  ( `' T " { z } ) )  e. 
_V )
6244, 60, 61syl2anc 642 . . 3  |-  ( (
ph  /\  z  e.  A )  ->  ( A  i^i  ( `' T " { z } ) )  e.  _V )
6362ralrimiva 2626 . 2  |-  ( ph  ->  A. z  e.  A  ( A  i^i  ( `' T " { z } ) )  e. 
_V )
64 dfse2 5046 . 2  |-  ( T Se  A  <->  A. z  e.  A  ( A  i^i  ( `' T " { z } ) )  e. 
_V )
6563, 64sylibr 203 1  |-  ( ph  ->  T Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   {csn 3640   class class class wbr 4023   {copab 4076   Se wse 4350   `'ccnv 4688   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255
This theorem is referenced by:  r0weon  7640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-se 4353  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
  Copyright terms: Public domain W3C validator