MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresb Unicode version

Theorem fnssresb 5356
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 5258 . 2  |-  ( ( F  |`  B )  Fn  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) )
2 fnfun 5341 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
3 funres 5293 . . . . 5  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
42, 3syl 15 . . . 4  |-  ( F  Fn  A  ->  Fun  ( F  |`  B ) )
54biantrurd 494 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) ) )
6 ssdmres 4977 . . . 4  |-  ( B 
C_  dom  F  <->  dom  ( F  |`  B )  =  B )
7 fndm 5343 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87sseq2d 3206 . . . 4  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
96, 8syl5bbr 250 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  B  C_  A
) )
105, 9bitr3d 246 . 2  |-  ( F  Fn  A  ->  (
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B )  <->  B  C_  A
) )
111, 10syl5bb 248 1  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    C_ wss 3152   dom cdm 4689    |` cres 4691   Fun wfun 5249    Fn wfn 5250
This theorem is referenced by:  fnssres  5357  plyreres  19663  xrge0pluscn  23322  prl2  25169  fnbrafvb  28016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-fun 5257  df-fn 5258
  Copyright terms: Public domain W3C validator