MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsuppres Unicode version

Theorem fnsuppres 5732
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
fnsuppres  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  (
( `' F "
( _V  \  { Z } ) )  C_  A 
<->  ( F  |`  B )  =  ( B  X.  { Z } ) ) )

Proof of Theorem fnsuppres
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 unss 3349 . . . 4  |-  ( ( { a  e.  A  |  ( F `  a )  =/=  Z }  C_  A  /\  {
a  e.  B  | 
( F `  a
)  =/=  Z }  C_  A )  <->  ( {
a  e.  A  | 
( F `  a
)  =/=  Z }  u.  { a  e.  B  |  ( F `  a )  =/=  Z } )  C_  A
)
2 ssrab2 3258 . . . . 5  |-  { a  e.  A  |  ( F `  a )  =/=  Z }  C_  A
32biantrur 492 . . . 4  |-  ( { a  e.  B  | 
( F `  a
)  =/=  Z }  C_  A  <->  ( { a  e.  A  |  ( F `  a )  =/=  Z }  C_  A  /\  { a  e.  B  |  ( F `
 a )  =/= 
Z }  C_  A
) )
4 rabun2 3447 . . . . 5  |-  { a  e.  ( A  u.  B )  |  ( F `  a )  =/=  Z }  =  ( { a  e.  A  |  ( F `  a )  =/=  Z }  u.  { a  e.  B  |  ( F `  a )  =/=  Z } )
54sseq1i 3202 . . . 4  |-  ( { a  e.  ( A  u.  B )  |  ( F `  a
)  =/=  Z }  C_  A  <->  ( { a  e.  A  |  ( F `  a )  =/=  Z }  u.  { a  e.  B  | 
( F `  a
)  =/=  Z }
)  C_  A )
61, 3, 53bitr4ri 269 . . 3  |-  ( { a  e.  ( A  u.  B )  |  ( F `  a
)  =/=  Z }  C_  A  <->  { a  e.  B  |  ( F `  a )  =/=  Z }  C_  A )
7 rabss 3250 . . . 4  |-  ( { a  e.  B  | 
( F `  a
)  =/=  Z }  C_  A  <->  A. a  e.  B  ( ( F `  a )  =/=  Z  ->  a  e.  A ) )
8 fvres 5542 . . . . . . . 8  |-  ( a  e.  B  ->  (
( F  |`  B ) `
 a )  =  ( F `  a
) )
98adantl 452 . . . . . . 7  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B
)  =  (/)  /\  Z  e.  V )  /\  a  e.  B )  ->  (
( F  |`  B ) `
 a )  =  ( F `  a
) )
10 fvconst2g 5727 . . . . . . . 8  |-  ( ( Z  e.  V  /\  a  e.  B )  ->  ( ( B  X.  { Z } ) `  a )  =  Z )
11103ad2antl3 1119 . . . . . . 7  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B
)  =  (/)  /\  Z  e.  V )  /\  a  e.  B )  ->  (
( B  X.  { Z } ) `  a
)  =  Z )
129, 11eqeq12d 2297 . . . . . 6  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B
)  =  (/)  /\  Z  e.  V )  /\  a  e.  B )  ->  (
( ( F  |`  B ) `  a
)  =  ( ( B  X.  { Z } ) `  a
)  <->  ( F `  a )  =  Z ) )
13 nne 2450 . . . . . . 7  |-  ( -.  ( F `  a
)  =/=  Z  <->  ( F `  a )  =  Z )
1413a1i 10 . . . . . 6  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B
)  =  (/)  /\  Z  e.  V )  /\  a  e.  B )  ->  ( -.  ( F `  a
)  =/=  Z  <->  ( F `  a )  =  Z ) )
15 id 19 . . . . . . . 8  |-  ( a  e.  B  ->  a  e.  B )
16 simp2 956 . . . . . . . 8  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  ( A  i^i  B )  =  (/) )
17 minel 3510 . . . . . . . 8  |-  ( ( a  e.  B  /\  ( A  i^i  B )  =  (/) )  ->  -.  a  e.  A )
1815, 16, 17syl2anr 464 . . . . . . 7  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B
)  =  (/)  /\  Z  e.  V )  /\  a  e.  B )  ->  -.  a  e.  A )
19 mtt 329 . . . . . . 7  |-  ( -.  a  e.  A  -> 
( -.  ( F `
 a )  =/= 
Z  <->  ( ( F `
 a )  =/= 
Z  ->  a  e.  A ) ) )
2018, 19syl 15 . . . . . 6  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B
)  =  (/)  /\  Z  e.  V )  /\  a  e.  B )  ->  ( -.  ( F `  a
)  =/=  Z  <->  ( ( F `  a )  =/=  Z  ->  a  e.  A ) ) )
2112, 14, 203bitr2rd 273 . . . . 5  |-  ( ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B
)  =  (/)  /\  Z  e.  V )  /\  a  e.  B )  ->  (
( ( F `  a )  =/=  Z  ->  a  e.  A )  <-> 
( ( F  |`  B ) `  a
)  =  ( ( B  X.  { Z } ) `  a
) ) )
2221ralbidva 2559 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  ( A. a  e.  B  ( ( F `  a )  =/=  Z  ->  a  e.  A )  <->  A. a  e.  B  ( ( F  |`  B ) `  a
)  =  ( ( B  X.  { Z } ) `  a
) ) )
237, 22syl5bb 248 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  ( { a  e.  B  |  ( F `  a )  =/=  Z }  C_  A  <->  A. a  e.  B  ( ( F  |`  B ) `  a )  =  ( ( B  X.  { Z } ) `  a
) ) )
246, 23syl5bb 248 . 2  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  ( { a  e.  ( A  u.  B )  |  ( F `  a )  =/=  Z }  C_  A  <->  A. a  e.  B  ( ( F  |`  B ) `  a )  =  ( ( B  X.  { Z } ) `  a
) ) )
25 fnniniseg2 5649 . . . 4  |-  ( F  Fn  ( A  u.  B )  ->  ( `' F " ( _V 
\  { Z }
) )  =  {
a  e.  ( A  u.  B )  |  ( F `  a
)  =/=  Z }
)
26253ad2ant1 976 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  ( `' F " ( _V 
\  { Z }
) )  =  {
a  e.  ( A  u.  B )  |  ( F `  a
)  =/=  Z }
)
2726sseq1d 3205 . 2  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  (
( `' F "
( _V  \  { Z } ) )  C_  A 
<->  { a  e.  ( A  u.  B )  |  ( F `  a )  =/=  Z }  C_  A ) )
28 simp1 955 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  F  Fn  ( A  u.  B
) )
29 ssun2 3339 . . . . 5  |-  B  C_  ( A  u.  B
)
3029a1i 10 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  B  C_  ( A  u.  B
) )
31 fnssres 5357 . . . 4  |-  ( ( F  Fn  ( A  u.  B )  /\  B  C_  ( A  u.  B ) )  -> 
( F  |`  B )  Fn  B )
3228, 30, 31syl2anc 642 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  ( F  |`  B )  Fn  B )
33 fnconstg 5429 . . . 4  |-  ( Z  e.  V  ->  ( B  X.  { Z }
)  Fn  B )
34333ad2ant3 978 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  ( B  X.  { Z }
)  Fn  B )
35 eqfnfv 5622 . . 3  |-  ( ( ( F  |`  B )  Fn  B  /\  ( B  X.  { Z }
)  Fn  B )  ->  ( ( F  |`  B )  =  ( B  X.  { Z } )  <->  A. a  e.  B  ( ( F  |`  B ) `  a )  =  ( ( B  X.  { Z } ) `  a
) ) )
3632, 34, 35syl2anc 642 . 2  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  (
( F  |`  B )  =  ( B  X.  { Z } )  <->  A. a  e.  B  ( ( F  |`  B ) `  a )  =  ( ( B  X.  { Z } ) `  a
) ) )
3724, 27, 363bitr4d 276 1  |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  (
( `' F "
( _V  \  { Z } ) )  C_  A 
<->  ( F  |`  B )  =  ( B  X.  { Z } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   {crab 2547   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640    X. cxp 4687   `'ccnv 4688    |` cres 4691   "cima 4692    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  fnsuppeq0  5733  frlmsslss2  27245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
  Copyright terms: Public domain W3C validator