MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnun Unicode version

Theorem fnun 5350
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fnun  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)

Proof of Theorem fnun
StepHypRef Expression
1 df-fn 5258 . . 3  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
2 df-fn 5258 . . 3  |-  ( G  Fn  B  <->  ( Fun  G  /\  dom  G  =  B ) )
3 ineq12 3365 . . . . . . . . . . 11  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F  i^i  dom  G
)  =  ( A  i^i  B ) )
43eqeq1d 2291 . . . . . . . . . 10  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( dom  F  i^i  dom 
G )  =  (/)  <->  ( A  i^i  B )  =  (/) ) )
54anbi2d 684 . . . . . . . . 9  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G )  =  (/) )  <->  ( ( Fun  F  /\  Fun  G
)  /\  ( A  i^i  B )  =  (/) ) ) )
6 funun 5296 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
75, 6syl6bir 220 . . . . . . . 8  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  Fun  ( F  u.  G
) ) )
8 dmun 4885 . . . . . . . . 9  |-  dom  ( F  u.  G )  =  ( dom  F  u.  dom  G )
9 uneq12 3324 . . . . . . . . 9  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F  u.  dom  G
)  =  ( A  u.  B ) )
108, 9syl5eq 2327 . . . . . . . 8  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  dom  ( F  u.  G
)  =  ( A  u.  B ) )
117, 10jctird 528 . . . . . . 7  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  ( Fun  ( F  u.  G
)  /\  dom  ( F  u.  G )  =  ( A  u.  B
) ) ) )
12 df-fn 5258 . . . . . . 7  |-  ( ( F  u.  G )  Fn  ( A  u.  B )  <->  ( Fun  ( F  u.  G
)  /\  dom  ( F  u.  G )  =  ( A  u.  B
) ) )
1311, 12syl6ibr 218 . . . . . 6  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
1413exp3a 425 . . . . 5  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( Fun  F  /\  Fun  G )  ->  (
( A  i^i  B
)  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) ) )
1514impcom 419 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  =  A  /\  dom  G  =  B ) )  ->  ( ( A  i^i  B )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B )
) )
1615an4s 799 . . 3  |-  ( ( ( Fun  F  /\  dom  F  =  A )  /\  ( Fun  G  /\  dom  G  =  B ) )  ->  (
( A  i^i  B
)  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
171, 2, 16syl2anb 465 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  i^i  B )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
1817imp 418 1  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    u. cun 3150    i^i cin 3151   (/)c0 3455   dom cdm 4689   Fun wfun 5249    Fn wfn 5250
This theorem is referenced by:  fnunsn  5351  fun  5405  foun  5491  f1oun  5492  undifixp  6852  brwdom2  7287  vdgrun  23893  eupap1  23900  fullfunfnv  24484  bnj927  28800  bnj535  28922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-fun 5257  df-fn 5258
  Copyright terms: Public domain W3C validator