MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunirn Structured version   Unicode version

Theorem fnunirn 6002
Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnunirn  |-  ( F  Fn  I  ->  ( A  e.  U. ran  F  <->  E. x  e.  I  A  e.  ( F `  x ) ) )
Distinct variable groups:    x, A    x, I    x, F

Proof of Theorem fnunirn
StepHypRef Expression
1 fnfun 5545 . . 3  |-  ( F  Fn  I  ->  Fun  F )
2 elunirn 6001 . . 3  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
31, 2syl 16 . 2  |-  ( F  Fn  I  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x ) ) )
4 fndm 5547 . . 3  |-  ( F  Fn  I  ->  dom  F  =  I )
54rexeqdv 2913 . 2  |-  ( F  Fn  I  ->  ( E. x  e.  dom  F  A  e.  ( F `
 x )  <->  E. x  e.  I  A  e.  ( F `  x ) ) )
63, 5bitrd 246 1  |-  ( F  Fn  I  ->  ( A  e.  U. ran  F  <->  E. x  e.  I  A  e.  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    e. wcel 1726   E.wrex 2708   U.cuni 4017   dom cdm 4881   ran crn 4882   Fun wfun 5451    Fn wfn 5452   ` cfv 5457
This theorem is referenced by:  itunitc  8306  wunex2  8618  mreunirn  13831  arwhoma  14205  filunirn  17919  xmetunirn  18372  abfmpunirn  24069  neibastop2lem  26403  stoweidlem59  27798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465
  Copyright terms: Public domain W3C validator