MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunsn Unicode version

Theorem fnunsn 5519
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
fnunop.x  |-  ( ph  ->  X  e.  _V )
fnunop.y  |-  ( ph  ->  Y  e.  _V )
fnunop.f  |-  ( ph  ->  F  Fn  D )
fnunop.g  |-  G  =  ( F  u.  { <. X ,  Y >. } )
fnunop.e  |-  E  =  ( D  u.  { X } )
fnunop.d  |-  ( ph  ->  -.  X  e.  D
)
Assertion
Ref Expression
fnunsn  |-  ( ph  ->  G  Fn  E )

Proof of Theorem fnunsn
StepHypRef Expression
1 fnunop.f . . 3  |-  ( ph  ->  F  Fn  D )
2 fnunop.x . . . 4  |-  ( ph  ->  X  e.  _V )
3 fnunop.y . . . 4  |-  ( ph  ->  Y  e.  _V )
4 fnsng 5465 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { <. X ,  Y >. }  Fn  { X } )
52, 3, 4syl2anc 643 . . 3  |-  ( ph  ->  { <. X ,  Y >. }  Fn  { X } )
6 fnunop.d . . . 4  |-  ( ph  ->  -.  X  e.  D
)
7 disjsn 3836 . . . 4  |-  ( ( D  i^i  { X } )  =  (/)  <->  -.  X  e.  D )
86, 7sylibr 204 . . 3  |-  ( ph  ->  ( D  i^i  { X } )  =  (/) )
9 fnun 5518 . . 3  |-  ( ( ( F  Fn  D  /\  { <. X ,  Y >. }  Fn  { X } )  /\  ( D  i^i  { X }
)  =  (/) )  -> 
( F  u.  { <. X ,  Y >. } )  Fn  ( D  u.  { X }
) )
101, 5, 8, 9syl21anc 1183 . 2  |-  ( ph  ->  ( F  u.  { <. X ,  Y >. } )  Fn  ( D  u.  { X }
) )
11 fnunop.g . . . 4  |-  G  =  ( F  u.  { <. X ,  Y >. } )
1211fneq1i 5506 . . 3  |-  ( G  Fn  E  <->  ( F  u.  { <. X ,  Y >. } )  Fn  E
)
13 fnunop.e . . . 4  |-  E  =  ( D  u.  { X } )
1413fneq2i 5507 . . 3  |-  ( ( F  u.  { <. X ,  Y >. } )  Fn  E  <->  ( F  u.  { <. X ,  Y >. } )  Fn  ( D  u.  { X } ) )
1512, 14bitri 241 . 2  |-  ( G  Fn  E  <->  ( F  u.  { <. X ,  Y >. } )  Fn  ( D  u.  { X } ) )
1610, 15sylibr 204 1  |-  ( ph  ->  G  Fn  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1649    e. wcel 1721   _Vcvv 2924    u. cun 3286    i^i cin 3287   (/)c0 3596   {csn 3782   <.cop 3785    Fn wfn 5416
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-fun 5423  df-fn 5424
  Copyright terms: Public domain W3C validator