Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem1 Unicode version

Theorem fnwe2lem1 26470
Description: Lemma for fnwe2 26473. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su  |-  ( z  =  ( F `  x )  ->  S  =  U )
fnwe2.t  |-  T  =  { <. x ,  y
>.  |  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x U y ) ) }
fnwe2.s  |-  ( (
ph  /\  x  e.  A )  ->  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
Assertion
Ref Expression
fnwe2lem1  |-  ( (
ph  /\  a  e.  A )  ->  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
Distinct variable groups:    y, U, z, a    x, S, y, a    x, R, y, a    ph, x, y, z   
x, A, y, z, a    x, F, y, z, a    T, a
Allowed substitution hints:    ph( a)    R( z)    S( z)    T( x, y, z)    U( x)

Proof of Theorem fnwe2lem1
StepHypRef Expression
1 fnwe2.s . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
21ralrimiva 2702 . . 3  |-  ( ph  ->  A. x  e.  A  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
3 fveq2 5605 . . . . . . 7  |-  ( a  =  x  ->  ( F `  a )  =  ( F `  x ) )
43csbeq1d 3163 . . . . . 6  |-  ( a  =  x  ->  [_ ( F `  a )  /  z ]_ S  =  [_ ( F `  x )  /  z ]_ S )
5 fvex 5619 . . . . . . 7  |-  ( F `
 x )  e. 
_V
6 nfcv 2494 . . . . . . 7  |-  F/_ z U
7 fnwe2.su . . . . . . 7  |-  ( z  =  ( F `  x )  ->  S  =  U )
85, 6, 7csbief 3198 . . . . . 6  |-  [_ ( F `  x )  /  z ]_ S  =  U
94, 8syl6eq 2406 . . . . 5  |-  ( a  =  x  ->  [_ ( F `  a )  /  z ]_ S  =  U )
103eqeq2d 2369 . . . . . 6  |-  ( a  =  x  ->  (
( F `  y
)  =  ( F `
 a )  <->  ( F `  y )  =  ( F `  x ) ) )
1110rabbidv 2856 . . . . 5  |-  ( a  =  x  ->  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  =  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
129, 11weeq12d 26459 . . . 4  |-  ( a  =  x  ->  ( [_ ( F `  a
)  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  <->  U  We  { y  e.  A  | 
( F `  y
)  =  ( F `
 x ) } ) )
1312cbvralv 2840 . . 3  |-  ( A. a  e.  A  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  <->  A. x  e.  A  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
142, 13sylibr 203 . 2  |-  ( ph  ->  A. a  e.  A  [_ ( F `  a
)  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
1514r19.21bi 2717 1  |-  ( (
ph  /\  a  e.  A )  ->  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1642    e. wcel 1710   A.wral 2619   {crab 2623   [_csb 3157   class class class wbr 4102   {copab 4155    We wwe 4430   ` cfv 5334
This theorem is referenced by:  fnwe2lem2  26471  fnwe2lem3  26472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-nul 4228
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-iota 5298  df-fv 5342
  Copyright terms: Public domain W3C validator