MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1stres Unicode version

Theorem fo1stres 6143
Description: Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
fo1stres  |-  ( B  =/=  (/)  ->  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B )
-onto-> A )

Proof of Theorem fo1stres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3464 . . . . . . 7  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
2 opelxp 4719 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
3 fvres 5542 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  =  ( 1st `  <. x ,  y
>. ) )
4 vex 2791 . . . . . . . . . . . . 13  |-  x  e. 
_V
5 vex 2791 . . . . . . . . . . . . 13  |-  y  e. 
_V
64, 5op1st 6128 . . . . . . . . . . . 12  |-  ( 1st `  <. x ,  y
>. )  =  x
73, 6syl6req 2332 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  =  ( ( 1st  |`  ( A  X.  B ) ) `
 <. x ,  y
>. ) )
8 f1stres 6141 . . . . . . . . . . . . 13  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
9 ffn 5389 . . . . . . . . . . . . 13  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B
) )
108, 9ax-mp 8 . . . . . . . . . . . 12  |-  ( 1st  |`  ( A  X.  B
) )  Fn  ( A  X.  B )
11 fnfvelrn 5662 . . . . . . . . . . . 12  |-  ( ( ( 1st  |`  ( A  X.  B ) )  Fn  ( A  X.  B )  /\  <. x ,  y >.  e.  ( A  X.  B ) )  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1210, 11mpan 651 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  ( ( 1st  |`  ( A  X.  B ) ) `  <. x ,  y >.
)  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
137, 12eqeltrd 2357 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
142, 13sylbir 204 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  ->  x  e.  ran  ( 1st  |`  ( A  X.  B ) ) )
1514expcom 424 . . . . . . . 8  |-  ( y  e.  B  ->  (
x  e.  A  ->  x  e.  ran  ( 1st  |`  ( A  X.  B
) ) ) )
1615exlimiv 1666 . . . . . . 7  |-  ( E. y  y  e.  B  ->  ( x  e.  A  ->  x  e.  ran  ( 1st  |`  ( A  X.  B ) ) ) )
171, 16sylbi 187 . . . . . 6  |-  ( B  =/=  (/)  ->  ( x  e.  A  ->  x  e. 
ran  ( 1st  |`  ( A  X.  B ) ) ) )
1817ssrdv 3185 . . . . 5  |-  ( B  =/=  (/)  ->  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) )
19 frn 5395 . . . . . 6  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  ->  ran  ( 1st  |`  ( A  X.  B ) )  C_  A )
208, 19ax-mp 8 . . . . 5  |-  ran  ( 1st  |`  ( A  X.  B ) )  C_  A
2118, 20jctil 523 . . . 4  |-  ( B  =/=  (/)  ->  ( ran  ( 1st  |`  ( A  X.  B ) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
22 eqss 3194 . . . 4  |-  ( ran  ( 1st  |`  ( A  X.  B ) )  =  A  <->  ( ran  ( 1st  |`  ( A  X.  B ) )  C_  A  /\  A  C_  ran  ( 1st  |`  ( A  X.  B ) ) ) )
2321, 22sylibr 203 . . 3  |-  ( B  =/=  (/)  ->  ran  ( 1st  |`  ( A  X.  B
) )  =  A )
2423, 8jctil 523 . 2  |-  ( B  =/=  (/)  ->  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
25 dffo2 5455 . 2  |-  ( ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) -onto-> A  <->  ( ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A  /\  ran  ( 1st  |`  ( A  X.  B ) )  =  A ) )
2624, 25sylibr 203 1  |-  ( B  =/=  (/)  ->  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B )
-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   (/)c0 3455   <.cop 3643    X. cxp 4687   ran crn 4690    |` cres 4691    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255   1stc1st 6120
This theorem is referenced by:  1stconst  6207  txcmpb  17338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6122
  Copyright terms: Public domain W3C validator