MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fococnv2 Unicode version

Theorem fococnv2 5642
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 5595 . . 3  |-  ( F : A -onto-> B  ->  Fun  F )
2 funcocnv2 5641 . . 3  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
31, 2syl 16 . 2  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  ran  F ) )
4 forn 5597 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
54reseq2d 5087 . 2  |-  ( F : A -onto-> B  -> 
(  _I  |`  ran  F
)  =  (  _I  |`  B ) )
63, 5eqtrd 2420 1  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    _I cid 4435   `'ccnv 4818   ran crn 4820    |` cres 4821    o. ccom 4823   Fun wfun 5389   -onto->wfo 5393
This theorem is referenced by:  f1ococnv2  5643  foeqcnvco  5967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-br 4155  df-opab 4209  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-fun 5397  df-fn 5398  df-f 5399  df-fo 5401
  Copyright terms: Public domain W3C validator