Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodmrnu Structured version   Unicode version

Theorem fodmrnu 5661
 Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
Assertion
Ref Expression
fodmrnu

Proof of Theorem fodmrnu
StepHypRef Expression
1 fofn 5655 . . 3
2 fofn 5655 . . 3
3 fndmu 5546 . . 3
41, 2, 3syl2an 464 . 2
5 forn 5656 . . 3
6 forn 5656 . . 3
75, 6sylan9req 2489 . 2
84, 7jca 519 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   crn 4879   wfn 5449  wfo 5452 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-in 3327  df-ss 3334  df-fn 5457  df-f 5458  df-fo 5460
 Copyright terms: Public domain W3C validator