MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomb Unicode version

Theorem fodomb 8339
Description: Equivalence of an onto mapping and dominance for a non-empty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.)
Assertion
Ref Expression
fodomb  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem fodomb
StepHypRef Expression
1 fof 5595 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  -> 
f : A --> B )
2 fdm 5537 . . . . . . . . . . . 12  |-  ( f : A --> B  ->  dom  f  =  A
)
31, 2syl 16 . . . . . . . . . . 11  |-  ( f : A -onto-> B  ->  dom  f  =  A
)
43eqeq1d 2397 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  A  =  (/) ) )
5 dm0rn0 5028 . . . . . . . . . . 11  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
6 forn 5598 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  ->  ran  f  =  B
)
76eqeq1d 2397 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( ran  f  =  (/)  <->  B  =  (/) ) )
85, 7syl5bb 249 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  B  =  (/) ) )
94, 8bitr3d 247 . . . . . . . . 9  |-  ( f : A -onto-> B  -> 
( A  =  (/)  <->  B  =  (/) ) )
109necon3bid 2587 . . . . . . . 8  |-  ( f : A -onto-> B  -> 
( A  =/=  (/)  <->  B  =/=  (/) ) )
1110biimpac 473 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  B  =/=  (/) )
12 vex 2904 . . . . . . . . . . . 12  |-  f  e. 
_V
1312dmex 5074 . . . . . . . . . . 11  |-  dom  f  e.  _V
143, 13syl6eqelr 2478 . . . . . . . . . 10  |-  ( f : A -onto-> B  ->  A  e.  _V )
15 fornex 5911 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  e.  _V )
)
1614, 15mpcom 34 . . . . . . . . 9  |-  ( f : A -onto-> B  ->  B  e.  _V )
17 0sdomg 7174 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
1816, 17syl 16 . . . . . . . 8  |-  ( f : A -onto-> B  -> 
( (/)  ~<  B  <->  B  =/=  (/) ) )
1918adantl 453 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
2011, 19mpbird 224 . . . . . 6  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  (/)  ~<  B )
2120ex 424 . . . . 5  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  (/)  ~<  B ) )
22 fodomg 8338 . . . . . . 7  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  ~<_  A ) )
2314, 22mpcom 34 . . . . . 6  |-  ( f : A -onto-> B  ->  B  ~<_  A )
2423a1i 11 . . . . 5  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  B  ~<_  A ) )
2521, 24jcad 520 . . . 4  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2625exlimdv 1643 . . 3  |-  ( A  =/=  (/)  ->  ( E. f  f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2726imp 419 . 2  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  ->  ( (/) 
~<  B  /\  B  ~<_  A ) )
28 sdomdomtr 7178 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  (/)  ~<  A )
29 reldom 7053 . . . . . . 7  |-  Rel  ~<_
3029brrelex2i 4861 . . . . . 6  |-  ( B  ~<_  A  ->  A  e.  _V )
3130adantl 453 . . . . 5  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  e.  _V )
32 0sdomg 7174 . . . . 5  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3331, 32syl 16 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3428, 33mpbid 202 . . 3  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  =/=  (/) )
35 fodomr 7196 . . 3  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. f 
f : A -onto-> B
)
3634, 35jca 519 . 2  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  ( A  =/=  (/)  /\  E. f 
f : A -onto-> B
) )
3727, 36impbii 181 1  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2552   _Vcvv 2901   (/)c0 3573   class class class wbr 4155   dom cdm 4820   ran crn 4821   -->wf 5392   -onto->wfo 5394    ~<_ cdom 7045    ~< csdm 7046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-ac2 8278
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-suc 4530  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-card 7761  df-acn 7764  df-ac 7932
  Copyright terms: Public domain W3C validator