MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfi Unicode version

Theorem fodomfi 7135
Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodom 8149 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
fodomfi  |-  ( ( A  e.  Fin  /\  F : A -onto-> B )  ->  B  ~<_  A )

Proof of Theorem fodomfi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 5456 . . 3  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )
21adantl 452 . 2  |-  ( ( A  e.  Fin  /\  F : A -onto-> B )  ->  ( F " A )  =  B )
3 fofn 5453 . . . 4  |-  ( F : A -onto-> B  ->  F  Fn  A )
4 imaeq2 5008 . . . . . . . 8  |-  ( x  =  (/)  ->  ( F
" x )  =  ( F " (/) ) )
5 ima0 5030 . . . . . . . 8  |-  ( F
" (/) )  =  (/)
64, 5syl6eq 2331 . . . . . . 7  |-  ( x  =  (/)  ->  ( F
" x )  =  (/) )
7 id 19 . . . . . . 7  |-  ( x  =  (/)  ->  x  =  (/) )
86, 7breq12d 4036 . . . . . 6  |-  ( x  =  (/)  ->  ( ( F " x )  ~<_  x  <->  (/)  ~<_  (/) ) )
98imbi2d 307 . . . . 5  |-  ( x  =  (/)  ->  ( ( F  Fn  A  -> 
( F " x
)  ~<_  x )  <->  ( F  Fn  A  ->  (/)  ~<_  (/) ) ) )
10 imaeq2 5008 . . . . . . 7  |-  ( x  =  y  ->  ( F " x )  =  ( F " y
) )
11 id 19 . . . . . . 7  |-  ( x  =  y  ->  x  =  y )
1210, 11breq12d 4036 . . . . . 6  |-  ( x  =  y  ->  (
( F " x
)  ~<_  x  <->  ( F " y )  ~<_  y ) )
1312imbi2d 307 . . . . 5  |-  ( x  =  y  ->  (
( F  Fn  A  ->  ( F " x
)  ~<_  x )  <->  ( F  Fn  A  ->  ( F
" y )  ~<_  y ) ) )
14 imaeq2 5008 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  ( F "
x )  =  ( F " ( y  u.  { z } ) ) )
15 id 19 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  x  =  ( y  u.  { z } ) )
1614, 15breq12d 4036 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( F
" x )  ~<_  x  <-> 
( F " (
y  u.  { z } ) )  ~<_  ( y  u.  { z } ) ) )
1716imbi2d 307 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( F  Fn  A  ->  ( F " x )  ~<_  x )  <->  ( F  Fn  A  ->  ( F "
( y  u.  {
z } ) )  ~<_  ( y  u.  {
z } ) ) ) )
18 imaeq2 5008 . . . . . . 7  |-  ( x  =  A  ->  ( F " x )  =  ( F " A
) )
19 id 19 . . . . . . 7  |-  ( x  =  A  ->  x  =  A )
2018, 19breq12d 4036 . . . . . 6  |-  ( x  =  A  ->  (
( F " x
)  ~<_  x  <->  ( F " A )  ~<_  A ) )
2120imbi2d 307 . . . . 5  |-  ( x  =  A  ->  (
( F  Fn  A  ->  ( F " x
)  ~<_  x )  <->  ( F  Fn  A  ->  ( F
" A )  ~<_  A ) ) )
22 0ex 4150 . . . . . . 7  |-  (/)  e.  _V
23220dom 6991 . . . . . 6  |-  (/)  ~<_  (/)
2423a1i 10 . . . . 5  |-  ( F  Fn  A  ->  (/)  ~<_  (/) )
25 fnfun 5341 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  Fun  F )
2625ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  Fun  F )
27 funressn 5706 . . . . . . . . . . . . . 14  |-  ( Fun 
F  ->  ( F  |` 
{ z } ) 
C_  { <. z ,  ( F `  z ) >. } )
28 rnss 4907 . . . . . . . . . . . . . 14  |-  ( ( F  |`  { z } )  C_  { <. z ,  ( F `  z ) >. }  ->  ran  ( F  |`  { z } )  C_  ran  {
<. z ,  ( F `
 z ) >. } )
2926, 27, 283syl 18 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  ran  ( F  |`  { z } )  C_  ran  {
<. z ,  ( F `
 z ) >. } )
30 df-ima 4702 . . . . . . . . . . . . 13  |-  ( F
" { z } )  =  ran  ( F  |`  { z } )
31 vex 2791 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
3231rnsnop 5153 . . . . . . . . . . . . . 14  |-  ran  { <. z ,  ( F `
 z ) >. }  =  { ( F `  z ) }
3332eqcomi 2287 . . . . . . . . . . . . 13  |-  { ( F `  z ) }  =  ran  { <. z ,  ( F `
 z ) >. }
3429, 30, 333sstr4g 3219 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  ( F " { z } )  C_  { ( F `  z ) } )
35 snex 4216 . . . . . . . . . . . 12  |-  { ( F `  z ) }  e.  _V
36 ssexg 4160 . . . . . . . . . . . 12  |-  ( ( ( F " {
z } )  C_  { ( F `  z
) }  /\  {
( F `  z
) }  e.  _V )  ->  ( F " { z } )  e.  _V )
3734, 35, 36sylancl 643 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  ( F " { z } )  e.  _V )
38 fvi 5579 . . . . . . . . . . 11  |-  ( ( F " { z } )  e.  _V  ->  (  _I  `  ( F " { z } ) )  =  ( F " { z } ) )
3937, 38syl 15 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  (  _I  `  ( F " { z } ) )  =  ( F
" { z } ) )
4039uneq2d 3329 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  (
( F " y
)  u.  (  _I 
`  ( F " { z } ) ) )  =  ( ( F " y
)  u.  ( F
" { z } ) ) )
41 imaundi 5093 . . . . . . . . 9  |-  ( F
" ( y  u. 
{ z } ) )  =  ( ( F " y )  u.  ( F " { z } ) )
4240, 41syl6eqr 2333 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  (
( F " y
)  u.  (  _I 
`  ( F " { z } ) ) )  =  ( F " ( y  u.  { z } ) ) )
43 simprr 733 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  ( F " y )  ~<_  y )
44 ssdomg 6907 . . . . . . . . . . . 12  |-  ( { ( F `  z
) }  e.  _V  ->  ( ( F " { z } ) 
C_  { ( F `
 z ) }  ->  ( F " { z } )  ~<_  { ( F `  z ) } ) )
4535, 34, 44mpsyl 59 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  ( F " { z } )  ~<_  { ( F `
 z ) } )
46 fvex 5539 . . . . . . . . . . . . 13  |-  ( F `
 z )  e. 
_V
4746ensn1 6925 . . . . . . . . . . . 12  |-  { ( F `  z ) }  ~~  1o
4831ensn1 6925 . . . . . . . . . . . 12  |-  { z }  ~~  1o
4947, 48entr4i 6918 . . . . . . . . . . 11  |-  { ( F `  z ) }  ~~  { z }
50 domentr 6920 . . . . . . . . . . 11  |-  ( ( ( F " {
z } )  ~<_  { ( F `  z
) }  /\  {
( F `  z
) }  ~~  {
z } )  -> 
( F " {
z } )  ~<_  { z } )
5145, 49, 50sylancl 643 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  ( F " { z } )  ~<_  { z } )
5239, 51eqbrtrd 4043 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  (  _I  `  ( F " { z } ) )  ~<_  { z } )
53 simplr 731 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  -.  z  e.  y )
54 disjsn 3693 . . . . . . . . . 10  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
5553, 54sylibr 203 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  (
y  i^i  { z } )  =  (/) )
56 undom 6950 . . . . . . . . 9  |-  ( ( ( ( F "
y )  ~<_  y  /\  (  _I  `  ( F
" { z } ) )  ~<_  { z } )  /\  (
y  i^i  { z } )  =  (/) )  ->  ( ( F
" y )  u.  (  _I  `  ( F " { z } ) ) )  ~<_  ( y  u.  { z } ) )
5743, 52, 55, 56syl21anc 1181 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  (
( F " y
)  u.  (  _I 
`  ( F " { z } ) ) )  ~<_  ( y  u.  { z } ) )
5842, 57eqbrtrrd 4045 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( F  Fn  A  /\  ( F " y )  ~<_  y ) )  ->  ( F " ( y  u. 
{ z } ) )  ~<_  ( y  u. 
{ z } ) )
5958exp32 588 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( F  Fn  A  ->  ( ( F " y )  ~<_  y  ->  ( F " ( y  u.  {
z } ) )  ~<_  ( y  u.  {
z } ) ) ) )
6059a2d 23 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( F  Fn  A  ->  ( F " y )  ~<_  y )  ->  ( F  Fn  A  ->  ( F " ( y  u.  { z } ) )  ~<_  ( y  u.  { z } ) ) ) )
619, 13, 17, 21, 24, 60findcard2s 7099 . . . 4  |-  ( A  e.  Fin  ->  ( F  Fn  A  ->  ( F " A )  ~<_  A ) )
623, 61syl5 28 . . 3  |-  ( A  e.  Fin  ->  ( F : A -onto-> B  -> 
( F " A
)  ~<_  A ) )
6362imp 418 . 2  |-  ( ( A  e.  Fin  /\  F : A -onto-> B )  ->  ( F " A )  ~<_  A )
642, 63eqbrtrrd 4045 1  |-  ( ( A  e.  Fin  /\  F : A -onto-> B )  ->  B  ~<_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   <.cop 3643   class class class wbr 4023    _I cid 4304   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255   1oc1o 6472    ~~ cen 6860    ~<_ cdom 6861   Fincfn 6863
This theorem is referenced by:  fodomfib  7136  fofinf1o  7137  fidomdm  7138  fofi  7142  pwfilem  7150  cmpsub  17127  alexsubALT  17745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867
  Copyright terms: Public domain W3C validator