MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeqcnvco Unicode version

Theorem foeqcnvco 5820
Description: Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
foeqcnvco  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  <->  ( F  o.  `' G )  =  (  _I  |`  B )
) )

Proof of Theorem foeqcnvco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fococnv2 5515 . . . 4  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)
2 cnveq 4871 . . . . . 6  |-  ( F  =  G  ->  `' F  =  `' G
)
32coeq2d 4862 . . . . 5  |-  ( F  =  G  ->  ( F  o.  `' F
)  =  ( F  o.  `' G ) )
43eqeq1d 2304 . . . 4  |-  ( F  =  G  ->  (
( F  o.  `' F )  =  (  _I  |`  B )  <->  ( F  o.  `' G
)  =  (  _I  |`  B ) ) )
51, 4syl5ibcom 211 . . 3  |-  ( F : A -onto-> B  -> 
( F  =  G  ->  ( F  o.  `' G )  =  (  _I  |`  B )
) )
65adantr 451 . 2  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  ->  ( F  o.  `' G )  =  (  _I  |`  B ) ) )
7 fofn 5469 . . . . 5  |-  ( F : A -onto-> B  ->  F  Fn  A )
87ad2antrr 706 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  Fn  A )
9 fofn 5469 . . . . 5  |-  ( G : A -onto-> B  ->  G  Fn  A )
109ad2antlr 707 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  G  Fn  A )
119adantl 452 . . . . . . . . . . . 12  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  G  Fn  A )
12 fnopfv 5676 . . . . . . . . . . . 12  |-  ( ( G  Fn  A  /\  x  e.  A )  -> 
<. x ,  ( G `
 x ) >.  e.  G )
1311, 12sylan 457 . . . . . . . . . . 11  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  <. x ,  ( G `  x ) >.  e.  G
)
14 fvex 5555 . . . . . . . . . . . . 13  |-  ( G `
 x )  e. 
_V
15 vex 2804 . . . . . . . . . . . . 13  |-  x  e. 
_V
1614, 15brcnv 4880 . . . . . . . . . . . 12  |-  ( ( G `  x ) `' G x  <->  x G
( G `  x
) )
17 df-br 4040 . . . . . . . . . . . 12  |-  ( x G ( G `  x )  <->  <. x ,  ( G `  x
) >.  e.  G )
1816, 17bitri 240 . . . . . . . . . . 11  |-  ( ( G `  x ) `' G x  <->  <. x ,  ( G `  x
) >.  e.  G )
1913, 18sylibr 203 . . . . . . . . . 10  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x ) `' G x )
207adantr 451 . . . . . . . . . . . 12  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  F  Fn  A )
21 fnopfv 5676 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  -> 
<. x ,  ( F `
 x ) >.  e.  F )
2220, 21sylan 457 . . . . . . . . . . 11  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  <. x ,  ( F `  x ) >.  e.  F
)
23 df-br 4040 . . . . . . . . . . 11  |-  ( x F ( F `  x )  <->  <. x ,  ( F `  x
) >.  e.  F )
2422, 23sylibr 203 . . . . . . . . . 10  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  x F ( F `  x ) )
25 breq2 4043 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
( G `  x
) `' G y  <-> 
( G `  x
) `' G x ) )
26 breq1 4042 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
y F ( F `
 x )  <->  x F
( F `  x
) ) )
2725, 26anbi12d 691 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( ( G `  x ) `' G
y  /\  y F
( F `  x
) )  <->  ( ( G `  x ) `' G x  /\  x F ( F `  x ) ) ) )
2815, 27spcev 2888 . . . . . . . . . 10  |-  ( ( ( G `  x
) `' G x  /\  x F ( F `  x ) )  ->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) )
2919, 24, 28syl2anc 642 . . . . . . . . 9  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) )
30 fvex 5555 . . . . . . . . . 10  |-  ( F `
 x )  e. 
_V
3114, 30brco 4868 . . . . . . . . 9  |-  ( ( G `  x ) ( F  o.  `' G ) ( F `
 x )  <->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) )
3229, 31sylibr 203 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x )
( F  o.  `' G ) ( F `
 x ) )
3332adantlr 695 . . . . . . 7  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
) ( F  o.  `' G ) ( F `
 x ) )
34 breq 4041 . . . . . . . 8  |-  ( ( F  o.  `' G
)  =  (  _I  |`  B )  ->  (
( G `  x
) ( F  o.  `' G ) ( F `
 x )  <->  ( G `  x ) (  _I  |`  B ) ( F `
 x ) ) )
3534ad2antlr 707 . . . . . . 7  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( ( G `  x ) ( F  o.  `' G ) ( F `  x
)  <->  ( G `  x ) (  _I  |`  B ) ( F `
 x ) ) )
3633, 35mpbid 201 . . . . . 6  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
) (  _I  |`  B ) ( F `  x
) )
37 fof 5467 . . . . . . . . . 10  |-  ( G : A -onto-> B  ->  G : A --> B )
3837adantl 452 . . . . . . . . 9  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  G : A
--> B )
39 ffvelrn 5679 . . . . . . . . 9  |-  ( ( G : A --> B  /\  x  e.  A )  ->  ( G `  x
)  e.  B )
4038, 39sylan 457 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x )  e.  B )
41 fof 5467 . . . . . . . . . 10  |-  ( F : A -onto-> B  ->  F : A --> B )
4241adantr 451 . . . . . . . . 9  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  F : A
--> B )
43 ffvelrn 5679 . . . . . . . . 9  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
4442, 43sylan 457 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( F `  x )  e.  B )
45 resieq 4981 . . . . . . . 8  |-  ( ( ( G `  x
)  e.  B  /\  ( F `  x )  e.  B )  -> 
( ( G `  x ) (  _I  |`  B ) ( F `
 x )  <->  ( G `  x )  =  ( F `  x ) ) )
4640, 44, 45syl2anc 642 . . . . . . 7  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  (
( G `  x
) (  _I  |`  B ) ( F `  x
)  <->  ( G `  x )  =  ( F `  x ) ) )
4746adantlr 695 . . . . . 6  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( ( G `  x ) (  _I  |`  B ) ( F `
 x )  <->  ( G `  x )  =  ( F `  x ) ) )
4836, 47mpbid 201 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
)  =  ( F `
 x ) )
4948eqcomd 2301 . . . 4  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( F `  x
)  =  ( G `
 x ) )
508, 10, 49eqfnfvd 5641 . . 3  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  G )
5150ex 423 . 2  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  ->  F  =  G ) )
526, 51impbid 183 1  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  <->  ( F  o.  `' G )  =  (  _I  |`  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   <.cop 3656   class class class wbr 4039    _I cid 4320   `'ccnv 4704    |` cres 4707    o. ccom 4709    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   ` cfv 5271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279
  Copyright terms: Public domain W3C validator