MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fornex Structured version   Unicode version

Theorem fornex 5973
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
fornex  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)

Proof of Theorem fornex
StepHypRef Expression
1 fofun 5657 . . . 4  |-  ( F : A -onto-> B  ->  Fun  F )
2 funrnex 5970 . . . 4  |-  ( dom 
F  e.  C  -> 
( Fun  F  ->  ran 
F  e.  _V )
)
31, 2syl5com 29 . . 3  |-  ( F : A -onto-> B  -> 
( dom  F  e.  C  ->  ran  F  e.  _V ) )
4 fof 5656 . . . . 5  |-  ( F : A -onto-> B  ->  F : A --> B )
5 fdm 5598 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
64, 5syl 16 . . . 4  |-  ( F : A -onto-> B  ->  dom  F  =  A )
76eleq1d 2504 . . 3  |-  ( F : A -onto-> B  -> 
( dom  F  e.  C 
<->  A  e.  C ) )
8 forn 5659 . . . 4  |-  ( F : A -onto-> B  ->  ran  F  =  B )
98eleq1d 2504 . . 3  |-  ( F : A -onto-> B  -> 
( ran  F  e.  _V 
<->  B  e.  _V )
)
103, 7, 93imtr3d 260 . 2  |-  ( F : A -onto-> B  -> 
( A  e.  C  ->  B  e.  _V )
)
1110com12 30 1  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   _Vcvv 2958   dom cdm 4881   ran crn 4882   Fun wfun 5451   -->wf 5453   -onto->wfo 5455
This theorem is referenced by:  f1dmex  5974  f1oeng  7129  fodomnum  7943  ttukeylem1  8394  fodomb  8409  cnexALT  10613  imasbas  13743  imasds  13744  elqtop  17734  qtoprest  17754  indishmph  17835  imasf1oxmet  18410  ghgrp  21961  noprc  25641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465
  Copyright terms: Public domain W3C validator