MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foun Unicode version

Theorem foun 5597
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
foun  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
) -onto-> ( B  u.  D ) )

Proof of Theorem foun
StepHypRef Expression
1 fofn 5559 . . . 4  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 fofn 5559 . . . 4  |-  ( G : C -onto-> D  ->  G  Fn  C )
31, 2anim12i 549 . . 3  |-  ( ( F : A -onto-> B  /\  G : C -onto-> D
)  ->  ( F  Fn  A  /\  G  Fn  C ) )
4 fnun 5455 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C )
)
53, 4sylan 457 . 2  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C
) )
6 rnun 5192 . . 3  |-  ran  ( F  u.  G )  =  ( ran  F  u.  ran  G )
7 forn 5560 . . . . 5  |-  ( F : A -onto-> B  ->  ran  F  =  B )
87ad2antrr 706 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  F  =  B )
9 forn 5560 . . . . 5  |-  ( G : C -onto-> D  ->  ran  G  =  D )
109ad2antlr 707 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  G  =  D )
118, 10uneq12d 3418 . . 3  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( ran 
F  u.  ran  G
)  =  ( B  u.  D ) )
126, 11syl5eq 2410 . 2  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  ( F  u.  G )  =  ( B  u.  D ) )
13 df-fo 5364 . 2  |-  ( ( F  u.  G ) : ( A  u.  C ) -onto-> ( B  u.  D )  <->  ( ( F  u.  G )  Fn  ( A  u.  C
)  /\  ran  ( F  u.  G )  =  ( B  u.  D
) ) )
145, 12, 13sylanbrc 645 1  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
) -onto-> ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    u. cun 3236    i^i cin 3237   (/)c0 3543   ran crn 4793    Fn wfn 5353   -onto->wfo 5356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rab 2637  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-br 4126  df-opab 4180  df-id 4412  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-fun 5360  df-fn 5361  df-f 5362  df-fo 5364
  Copyright terms: Public domain W3C validator